Newer
Older
/*
* AC-3 Audio Decoder
* This code was developed as part of Google Summer of Code 2006.
* E-AC-3 support was added as part of Google Summer of Code 2007.
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
* Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
Justin Ruggles
committed
* Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
* This file is part of Libav.
* Libav is free software; you can redistribute it and/or
Diego Biurrun
committed
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
Diego Biurrun
committed
* version 2.1 of the License, or (at your option) any later version.
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Diego Biurrun
committed
* Lesser General Public License for more details.
Diego Biurrun
committed
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <stddef.h>
#include <math.h>
#include <string.h>
#include "libavutil/channel_layout.h"
#include "libavutil/crc.h"
#include "libavutil/downmix_info.h"
#include "bswapdsp.h"
#include "internal.h"
Alex Converse
committed
#include "aac_ac3_parser.h"
Justin Ruggles
committed
#include "ac3_parser.h"
#include "ac3dec.h"
/**
* table for ungrouping 3 values in 7 bits.
* used for exponents and bap=2 mantissas
*/
static uint8_t ungroup_3_in_7_bits_tab[128][3];
/** tables for ungrouping mantissas */
static int b1_mantissas[32][3];
static int b2_mantissas[128][3];
static int b3_mantissas[8];
static int b4_mantissas[128][2];
static int b5_mantissas[16];
/**
* Quantization table: levels for symmetric. bits for asymmetric.
* reference: Table 7.18 Mapping of bap to Quantizer
*/
static const uint8_t quantization_tab[16] = {
0, 3, 5, 7, 11, 15,
5, 6, 7, 8, 9, 10, 11, 12, 14, 16
};
/** dynamic range table. converts codes to scale factors. */
static float dynamic_range_tab[256];
/** Adjustments in dB gain */
static const float gain_levels[9] = {
LEVEL_PLUS_3DB,
LEVEL_PLUS_1POINT5DB,
LEVEL_MINUS_1POINT5DB,
LEVEL_MINUS_3DB,
LEVEL_MINUS_4POINT5DB,
LEVEL_MINUS_6DB,
LEVEL_ZERO,
/** Adjustments in dB gain (LFE, +10 to -21 dB) */
static const float gain_levels_lfe[32] = {
3.162275, 2.818382, 2.511886, 2.238719, 1.995261, 1.778278, 1.584893,
1.412536, 1.258924, 1.122018, 1.000000, 0.891251, 0.794328, 0.707946,
0.630957, 0.562341, 0.501187, 0.446683, 0.398107, 0.354813, 0.316227,
0.281838, 0.251188, 0.223872, 0.199526, 0.177828, 0.158489, 0.141253,
0.125892, 0.112201, 0.100000, 0.089125
};
/**
* Table for default stereo downmixing coefficients
* reference: Section 7.8.2 Downmixing Into Two Channels
*/
static const uint8_t ac3_default_coeffs[8][5][2] = {
{ { 2, 7 }, { 7, 2 }, },
{ { 4, 4 }, },
{ { 2, 7 }, { 7, 2 }, },
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, },
{ { 2, 7 }, { 7, 2 }, { 6, 6 }, },
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
{ { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
/**
* Symmetrical Dequantization
* reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
* Tables 7.19 to 7.23
*/
static inline int
symmetric_dequant(int code, int levels)
return ((code - (levels >> 1)) << 24) / levels;
/*
* Initialize tables at runtime.
*/
static av_cold void ac3_tables_init(void)
/* generate table for ungrouping 3 values in 7 bits
reference: Section 7.1.3 Exponent Decoding */
ungroup_3_in_7_bits_tab[i][0] = i / 25;
ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
}
/* generate grouped mantissa tables
reference: Section 7.3.5 Ungrouping of Mantissas */
/* bap=1 mantissas */
b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
/* bap=2 mantissas */
b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
/* bap=4 mantissas */
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
}
/* generate ungrouped mantissa tables
reference: Tables 7.21 and 7.23 */
/* bap=3 mantissas */
b3_mantissas[i] = symmetric_dequant(i, 7);
}
/* bap=5 mantissas */
b5_mantissas[i] = symmetric_dequant(i, 15);
}
/* generate dynamic range table
reference: Section 7.7.1 Dynamic Range Control */
int v = (i >> 5) - ((i >> 7) << 3) - 5;
dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
}
/**
* AVCodec initialization
*/
static av_cold int ac3_decode_init(AVCodecContext *avctx)
AC3DecodeContext *s = avctx->priv_data;
int i;
s->avctx = avctx;
ac3_tables_init();
Siarhei Siamashka
committed
ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
ff_kbd_window_init(s->window, 5.0, 256);
ff_bswapdsp_init(&s->bdsp);
avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
ff_ac3dsp_init(&s->ac3dsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
ff_fmt_convert_init(&s->fmt_conv, avctx);
av_lfg_init(&s->dith_state, 0);
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
/* allow downmixing to stereo or mono */
if (avctx->channels > 1 &&
avctx->request_channel_layout == AV_CH_LAYOUT_MONO)
avctx->channels = 1;
else if (avctx->channels > 2 &&
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
avctx->channels = 2;
s->downmixed = 1;
for (i = 0; i < AC3_MAX_CHANNELS; i++) {
s->xcfptr[i] = s->transform_coeffs[i];
s->dlyptr[i] = s->delay[i];
}
return 0;
Justin Ruggles
committed
/**
* Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
* GetBitContext within AC3DecodeContext must point to
* the start of the synchronized AC-3 bitstream.
static int ac3_parse_header(AC3DecodeContext *s)
{
GetBitContext *gbc = &s->gbc;
int i;
/* read the rest of the bsi. read twice for dual mono mode. */
do {
skip_bits(gbc, 5); // skip dialog normalization
if (get_bits1(gbc))
skip_bits(gbc, 8); //skip compression
if (get_bits1(gbc))
skip_bits(gbc, 8); //skip language code
if (get_bits1(gbc))
skip_bits(gbc, 7); //skip audio production information
} while (i--);
skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
/* skip the timecodes or parse the Alternate Bit Stream Syntax */
Tim Walker
committed
if (s->bitstream_id != 6) {
if (get_bits1(gbc))
skip_bits(gbc, 14); //skip timecode1
if (get_bits1(gbc))
skip_bits(gbc, 14); //skip timecode2
} else {
if (get_bits1(gbc)) {
s->preferred_downmix = get_bits(gbc, 2);
s->center_mix_level_ltrt = get_bits(gbc, 3);
s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
s->center_mix_level = get_bits(gbc, 3);
s->surround_mix_level = av_clip(get_bits(gbc, 3), 3, 7);
Tim Walker
committed
if (get_bits1(gbc)) {
s->dolby_surround_ex_mode = get_bits(gbc, 2);
s->dolby_headphone_mode = get_bits(gbc, 2);
skip_bits(gbc, 10); // skip adconvtyp (1), xbsi2 (8), encinfo (1)
}
}
/* skip additional bitstream info */
if (get_bits1(gbc)) {
i = get_bits(gbc, 6);
do {
skip_bits(gbc, 8);
* Common function to parse AC-3 or E-AC-3 frame header
*/
static int parse_frame_header(AC3DecodeContext *s)
Justin Ruggles
committed
AC3HeaderInfo hdr;
Justin Ruggles
committed
err = avpriv_ac3_parse_header(&s->gbc, &hdr);
Justin Ruggles
committed
return err;
/* get decoding parameters from header info */
s->bit_alloc_params.sr_code = hdr.sr_code;
Tim Walker
committed
s->bitstream_id = hdr.bitstream_id;
s->bitstream_mode = hdr.bitstream_mode;
s->channel_mode = hdr.channel_mode;
s->lfe_on = hdr.lfe_on;
s->bit_alloc_params.sr_shift = hdr.sr_shift;
s->sample_rate = hdr.sample_rate;
s->bit_rate = hdr.bit_rate;
s->channels = hdr.channels;
s->fbw_channels = s->channels - s->lfe_on;
s->lfe_ch = s->fbw_channels + 1;
s->frame_size = hdr.frame_size;
s->preferred_downmix = AC3_DMIXMOD_NOTINDICATED;
Bartlomiej Wolowiec
committed
s->center_mix_level = hdr.center_mix_level;
s->center_mix_level_ltrt = 4; // -3.0dB
Bartlomiej Wolowiec
committed
s->surround_mix_level = hdr.surround_mix_level;
s->surround_mix_level_ltrt = 4; // -3.0dB
s->lfe_mix_level_exists = 0;
s->num_blocks = hdr.num_blocks;
s->frame_type = hdr.frame_type;
Tim Walker
committed
s->dolby_surround_mode = hdr.dolby_surround_mode;
s->dolby_surround_ex_mode = AC3_DSUREXMOD_NOTINDICATED;
s->dolby_headphone_mode = AC3_DHEADPHONMOD_NOTINDICATED;
if (s->lfe_on) {
s->start_freq[s->lfe_ch] = 0;
s->end_freq[s->lfe_ch] = 7;
s->num_exp_groups[s->lfe_ch] = 2;
s->channel_in_cpl[s->lfe_ch] = 0;
}
Tim Walker
committed
if (s->bitstream_id <= 10) {
s->eac3 = 0;
s->snr_offset_strategy = 2;
s->block_switch_syntax = 1;
s->dither_flag_syntax = 1;
s->bit_allocation_syntax = 1;
s->fast_gain_syntax = 0;
s->first_cpl_leak = 0;
s->dba_syntax = 1;
s->skip_syntax = 1;
memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
} else if (CONFIG_EAC3_DECODER) {
s->eac3 = 1;
return ff_eac3_parse_header(s);
} else {
av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
Justin Ruggles
committed
}
/**
* Set stereo downmixing coefficients based on frame header info.
* reference: Section 7.8.2 Downmixing Into Two Channels
*/
static int set_downmix_coeffs(AC3DecodeContext *s)
Justin Ruggles
committed
{
int i;
float cmix = gain_levels[s-> center_mix_level];
float smix = gain_levels[s->surround_mix_level];
Justin Ruggles
committed
if (!s->downmix_coeffs[0]) {
s->downmix_coeffs[0] = av_malloc(2 * AC3_MAX_CHANNELS *
sizeof(**s->downmix_coeffs));
if (!s->downmix_coeffs[0])
return AVERROR(ENOMEM);
s->downmix_coeffs[1] = s->downmix_coeffs[0] + AC3_MAX_CHANNELS;
}
for (i = 0; i < s->fbw_channels; i++) {
s->downmix_coeffs[0][i] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
s->downmix_coeffs[1][i] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
if (s->channel_mode > 1 && s->channel_mode & 1) {
s->downmix_coeffs[0][1] = s->downmix_coeffs[1][1] = cmix;
if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
int nf = s->channel_mode - 2;
s->downmix_coeffs[0][nf] = s->downmix_coeffs[1][nf] = smix * LEVEL_MINUS_3DB;
if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
int nf = s->channel_mode - 4;
s->downmix_coeffs[0][nf] = s->downmix_coeffs[1][nf+1] = smix;
Justin Ruggles
committed
for (i = 0; i < s->fbw_channels; i++) {
norm0 += s->downmix_coeffs[0][i];
norm1 += s->downmix_coeffs[1][i];
}
norm0 = 1.0f / norm0;
norm1 = 1.0f / norm1;
for (i = 0; i < s->fbw_channels; i++) {
s->downmix_coeffs[0][i] *= norm0;
s->downmix_coeffs[1][i] *= norm1;
if (s->output_mode == AC3_CHMODE_MONO) {
for (i = 0; i < s->fbw_channels; i++)
s->downmix_coeffs[0][i] = (s->downmix_coeffs[0][i] +
s->downmix_coeffs[1][i]) * LEVEL_MINUS_3DB;
Justin Ruggles
committed
}
* Decode the grouped exponents according to exponent strategy.
* reference: Section 7.1.3 Exponent Decoding
static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
int dexp[256];
int expacc, prevexp;
/* unpack groups */
group_size = exp_strategy + (exp_strategy == EXP_D45);
for (grp = 0, i = 0; grp < ngrps; grp++) {
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
/* convert to absolute exps and expand groups */
prevexp = absexp;
for (i = 0, j = 0; i < ngrps * 3; i++) {
Justin Ruggles
committed
switch (group_size) {
case 4: dexps[j++] = prevexp;
dexps[j++] = prevexp;
case 2: dexps[j++] = prevexp;
case 1: dexps[j++] = prevexp;
/**
* Generate transform coefficients for each coupled channel in the coupling
* range using the coupling coefficients and coupling coordinates.
* reference: Section 7.4.3 Coupling Coordinate Format
*/
static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
{
bin = s->start_freq[CPL_CH];
for (band = 0; band < s->num_cpl_bands; band++) {
Justin Ruggles
committed
int band_start = bin;
int band_end = bin + s->cpl_band_sizes[band];
Justin Ruggles
committed
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (s->channel_in_cpl[ch]) {
Reimar Döffinger
committed
int cpl_coord = s->cpl_coords[ch][band] << 5;
Justin Ruggles
committed
for (bin = band_start; bin < band_end; bin++) {
s->fixed_coeffs[ch][bin] =
MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
Justin Ruggles
committed
}
if (ch == 2 && s->phase_flags[band]) {
for (bin = band_start; bin < band_end; bin++)
s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
}
Justin Ruggles
committed
bin = band_end;
}
}
/**
* Grouped mantissas for 3-level 5-level and 11-level quantization
*/
int b1_mant[2];
int b2_mant[2];
int b4_mant;
int b1;
int b2;
int b4;
} mant_groups;
* Decode the transform coefficients for a particular channel
* reference: Section 7.3 Quantization and Decoding of Mantissas
*/
Justin Ruggles
committed
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
int start_freq = s->start_freq[ch_index];
int end_freq = s->end_freq[ch_index];
uint8_t *baps = s->bap[ch_index];
int8_t *exps = s->dexps[ch_index];
int32_t *coeffs = s->fixed_coeffs[ch_index];
int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
GetBitContext *gbc = &s->gbc;
int freq;
for (freq = start_freq; freq < end_freq; freq++) {
int bap = baps[freq];
int mantissa;
/* random noise with approximate range of -0.707 to 0.707 */
mantissa = (av_lfg_get(&s->dith_state) / 362) - 5932275;
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
else
mantissa = 0;
break;
case 1:
if (m->b1) {
m->b1--;
mantissa = m->b1_mant[m->b1];
} else {
int bits = get_bits(gbc, 5);
mantissa = b1_mantissas[bits][0];
m->b1_mant[1] = b1_mantissas[bits][1];
m->b1_mant[0] = b1_mantissas[bits][2];
m->b1 = 2;
}
break;
case 2:
if (m->b2) {
m->b2--;
mantissa = m->b2_mant[m->b2];
} else {
int bits = get_bits(gbc, 7);
mantissa = b2_mantissas[bits][0];
m->b2_mant[1] = b2_mantissas[bits][1];
m->b2_mant[0] = b2_mantissas[bits][2];
m->b2 = 2;
}
break;
case 3:
mantissa = b3_mantissas[get_bits(gbc, 3)];
break;
case 4:
if (m->b4) {
m->b4 = 0;
mantissa = m->b4_mant;
} else {
int bits = get_bits(gbc, 7);
mantissa = b4_mantissas[bits][0];
m->b4_mant = b4_mantissas[bits][1];
m->b4 = 1;
}
break;
case 5:
mantissa = b5_mantissas[get_bits(gbc, 4)];
break;
default: /* 6 to 15 */
/* Shift mantissa and sign-extend it. */
mantissa = get_sbits(gbc, quantization_tab[bap]);
mantissa <<= 24 - quantization_tab[bap];
break;
coeffs[freq] = mantissa >> exps[freq];
}
}
Justin Ruggles
committed
/**
* Remove random dithering from coupling range coefficients with zero-bit
* mantissas for coupled channels which do not use dithering.
Justin Ruggles
committed
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
*/
static void remove_dithering(AC3DecodeContext *s) {
Justin Ruggles
committed
int ch, i;
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
if (!s->bap[CPL_CH][i])
s->fixed_coeffs[ch][i] = 0;
Justin Ruggles
committed
}
}
}
}
static inline void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk,
int ch, mant_groups *m)
{
if (!s->channel_uses_aht[ch]) {
ac3_decode_transform_coeffs_ch(s, ch, m);
} else {
/* if AHT is used, mantissas for all blocks are encoded in the first
block of the frame. */
int bin;
if (!blk && CONFIG_EAC3_DECODER)
ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
* Decode the transform coefficients.
static inline void decode_transform_coeffs(AC3DecodeContext *s, int blk)
Justin Ruggles
committed
int ch, end;
int got_cplchan = 0;
mant_groups m;
m.b1 = m.b2 = m.b4 = 0;
for (ch = 1; ch <= s->channels; ch++) {
/* transform coefficients for full-bandwidth channel */
Justin Ruggles
committed
decode_transform_coeffs_ch(s, blk, ch, &m);
/* transform coefficients for coupling channel come right after the
coefficients for the first coupled channel*/
if (s->channel_in_cpl[ch]) {
if (!got_cplchan) {
Justin Ruggles
committed
decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
calc_transform_coeffs_cpl(s);
got_cplchan = 1;
}
end = s->end_freq[CPL_CH];
end = s->end_freq[ch];
s->fixed_coeffs[ch][end] = 0;
/* zero the dithered coefficients for appropriate channels */
* Stereo rematrixing.
* reference: Section 7.5.4 Rematrixing : Decoding Technique
*/
static void do_rematrixing(AC3DecodeContext *s)
int end, bndend;
end = FFMIN(s->end_freq[1], s->end_freq[2]);
for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
if (s->rematrixing_flags[bnd]) {
bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
Justin Ruggles
committed
int tmp0 = s->fixed_coeffs[1][i];
s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
Justin Ruggles
committed
s->fixed_coeffs[2][i] = tmp0 - s->fixed_coeffs[2][i];
}
}
/**
* Inverse MDCT Transform.
* Convert frequency domain coefficients to time-domain audio samples.
* reference: Section 7.9.4 Transformation Equations
*/
static inline void do_imdct(AC3DecodeContext *s, int channels)
Justin Ruggles
committed
if (s->block_switch[ch]) {
float *x = s->tmp_output + 128;
for (i = 0; i < 128; i++)
x[i] = s->transform_coeffs[ch][2 * i];
s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
s->fdsp.vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1],
s->tmp_output, s->window, 128);
for (i = 0; i < 128; i++)
x[i] = s->transform_coeffs[ch][2 * i + 1];
s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch - 1], x);
s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
s->fdsp.vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1],
s->tmp_output, s->window, 128);
memcpy(s->delay[ch - 1], s->tmp_output + 128, 128 * sizeof(float));
}
}
/**
* Upmix delay samples from stereo to original channel layout.
*/
static void ac3_upmix_delay(AC3DecodeContext *s)
{
Justin Ruggles
committed
int channel_data_size = sizeof(s->delay[0]);
switch (s->channel_mode) {
case AC3_CHMODE_DUALMONO:
case AC3_CHMODE_STEREO:
/* upmix mono to stereo */
memcpy(s->delay[1], s->delay[0], channel_data_size);
break;
case AC3_CHMODE_2F2R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_2F1R:
memset(s->delay[2], 0, channel_data_size);
break;
case AC3_CHMODE_3F2R:
memset(s->delay[4], 0, channel_data_size);
case AC3_CHMODE_3F1R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_3F:
memcpy(s->delay[2], s->delay[1], channel_data_size);
memset(s->delay[1], 0, channel_data_size);
break;
}
}
/**
* Decode band structure for coupling, spectral extension, or enhanced coupling.
* The band structure defines how many subbands are in each band. For each
* subband in the range, 1 means it is combined with the previous band, and 0
* means that it starts a new band.
*
* @param[in] gbc bit reader context
* @param[in] blk block number
* @param[in] eac3 flag to indicate E-AC-3
* @param[in] ecpl flag to indicate enhanced coupling
* @param[in] start_subband subband number for start of range
* @param[in] end_subband subband number for end of range
* @param[in] default_band_struct default band structure table
* @param[out] num_bands number of bands (optionally NULL)
* @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
*/
static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
int ecpl, int start_subband, int end_subband,
const uint8_t *default_band_struct,
{
int subbnd, bnd, n_subbands, n_bands=0;
uint8_t coded_band_struct[22];
const uint8_t *band_struct;
n_subbands = end_subband - start_subband;
/* decode band structure from bitstream or use default */
if (!eac3 || get_bits1(gbc)) {
for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
coded_band_struct[subbnd] = get_bits1(gbc);
}
band_struct = coded_band_struct;
} else if (!blk) {
band_struct = &default_band_struct[start_subband+1];
} else {
/* no change in band structure */
return;
}
/* calculate number of bands and band sizes based on band structure.
note that the first 4 subbands in enhanced coupling span only 6 bins
instead of 12. */
if (num_bands || band_sizes ) {
n_bands = n_subbands;
bnd_sz[0] = ecpl ? 6 : 12;
for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
n_bands--;
bnd_sz[bnd] += subbnd_size;
} else {
bnd_sz[++bnd] = subbnd_size;
}
}
}
/* set optional output params */
if (num_bands)
*num_bands = n_bands;
if (band_sizes)
memcpy(band_sizes, bnd_sz, n_bands);
}
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
static inline int spx_strategy(AC3DecodeContext *s, int blk)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int dst_start_freq, dst_end_freq, src_start_freq,
start_subband, end_subband, ch;
/* determine which channels use spx */
if (s->channel_mode == AC3_CHMODE_MONO) {
s->channel_uses_spx[1] = 1;
} else {
for (ch = 1; ch <= fbw_channels; ch++)
s->channel_uses_spx[ch] = get_bits1(bc);
}
/* get the frequency bins of the spx copy region and the spx start
and end subbands */
dst_start_freq = get_bits(bc, 2);
start_subband = get_bits(bc, 3) + 2;
if (start_subband > 7)
start_subband += start_subband - 7;
end_subband = get_bits(bc, 3) + 5;
if (end_subband > 7)
end_subband += end_subband - 7;
dst_start_freq = dst_start_freq * 12 + 25;
src_start_freq = start_subband * 12 + 25;
dst_end_freq = end_subband * 12 + 25;
/* check validity of spx ranges */
if (start_subband >= end_subband) {
av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
"range (%d >= %d)\n", start_subband, end_subband);
return AVERROR_INVALIDDATA;
}
if (dst_start_freq >= src_start_freq) {
av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
"copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
return AVERROR_INVALIDDATA;
}
s->spx_dst_start_freq = dst_start_freq;
s->spx_src_start_freq = src_start_freq;
s->spx_dst_end_freq = dst_end_freq;
decode_band_structure(bc, blk, s->eac3, 0,
start_subband, end_subband,
ff_eac3_default_spx_band_struct,
&s->num_spx_bands,
s->spx_band_sizes);
return 0;
}
static inline void spx_coordinates(AC3DecodeContext *s)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int ch, bnd;
for (ch = 1; ch <= fbw_channels; ch++) {
if (s->channel_uses_spx[ch]) {
if (s->first_spx_coords[ch] || get_bits1(bc)) {
float spx_blend;
int bin, master_spx_coord;
s->first_spx_coords[ch] = 0;
spx_blend = get_bits(bc, 5) * (1.0f / 32);
master_spx_coord = get_bits(bc, 2) * 3;
bin = s->spx_src_start_freq;
for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
int bandsize;
int spx_coord_exp, spx_coord_mant;
float nratio, sblend, nblend, spx_coord;
/* calculate blending factors */
bandsize = s->spx_band_sizes[bnd];
nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
nratio = av_clipf(nratio, 0.0f, 1.0f);
nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
// to give unity variance
sblend = sqrtf(1.0f - nratio);
bin += bandsize;
/* decode spx coordinates */
spx_coord_exp = get_bits(bc, 4);
spx_coord_mant = get_bits(bc, 2);
if (spx_coord_exp == 15) spx_coord_mant <<= 1;
else spx_coord_mant += 4;
spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
spx_coord = spx_coord_mant * (1.0f / (1 << 23));
/* multiply noise and signal blending factors by spx coordinate */
s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
}
}
} else {
s->first_spx_coords[ch] = 1;
}
}
}
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
static inline int coupling_strategy(AC3DecodeContext *s, int blk,
uint8_t *bit_alloc_stages)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int channel_mode = s->channel_mode;
int ch;
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
if (!s->eac3)
s->cpl_in_use[blk] = get_bits1(bc);
if (s->cpl_in_use[blk]) {
/* coupling in use */
int cpl_start_subband, cpl_end_subband;
if (channel_mode < AC3_CHMODE_STEREO) {
av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
return AVERROR_INVALIDDATA;
}
/* check for enhanced coupling */
if (s->eac3 && get_bits1(bc)) {
/* TODO: parse enhanced coupling strategy info */
avpriv_request_sample(s->avctx, "Enhanced coupling");
return AVERROR_PATCHWELCOME;
}
/* determine which channels are coupled */
if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
s->channel_in_cpl[1] = 1;
s->channel_in_cpl[2] = 1;
} else {
for (ch = 1; ch <= fbw_channels; ch++)
s->channel_in_cpl[ch] = get_bits1(bc);
}
/* phase flags in use */
if (channel_mode == AC3_CHMODE_STEREO)
s->phase_flags_in_use = get_bits1(bc);
/* coupling frequency range */
cpl_start_subband = get_bits(bc, 4);
cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
get_bits(bc, 4) + 3;
if (cpl_start_subband >= cpl_end_subband) {
av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
cpl_start_subband, cpl_end_subband);
return AVERROR_INVALIDDATA;
}
s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
decode_band_structure(bc, blk, s->eac3, 0, cpl_start_subband,
cpl_end_subband,
ff_eac3_default_cpl_band_struct,
&s->num_cpl_bands, s->cpl_band_sizes);
} else {
/* coupling not in use */
for (ch = 1; ch <= fbw_channels; ch++) {
s->channel_in_cpl[ch] = 0;
s->first_cpl_coords[ch] = 1;
}
s->first_cpl_leak = s->eac3;
s->phase_flags_in_use = 0;
}
return 0;
}
static inline int coupling_coordinates(AC3DecodeContext *s, int blk)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int ch, bnd;
int cpl_coords_exist = 0;
for (ch = 1; ch <= fbw_channels; ch++) {
if (s->channel_in_cpl[ch]) {
if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(bc)) {
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
s->first_cpl_coords[ch] = 0;
cpl_coords_exist = 1;
master_cpl_coord = 3 * get_bits(bc, 2);
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
cpl_coord_exp = get_bits(bc, 4);
cpl_coord_mant = get_bits(bc, 4);
if (cpl_coord_exp == 15)
s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
else
s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
}
} else if (!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
"be present in block 0\n");
return AVERROR_INVALIDDATA;
}
} else {
/* channel not in coupling */
s->first_cpl_coords[ch] = 1;
}
}
/* phase flags */
if (s->channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
s->phase_flags[bnd] = s->phase_flags_in_use ? get_bits1(bc) : 0;
}
}
return 0;
}
* Decode a single audio block from the AC-3 bitstream.
static int decode_audio_block(AC3DecodeContext *s, int blk)
int fbw_channels = s->fbw_channels;
int channel_mode = s->channel_mode;
int i, bnd, seg, ch, ret;
int different_transforms;
int downmix_output;
GetBitContext *gbc = &s->gbc;
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS] = { 0 };
Justin Ruggles
committed
/* block switch flags */
different_transforms = 0;
if (s->block_switch_syntax) {
for (ch = 1; ch <= fbw_channels; ch++) {
s->block_switch[ch] = get_bits1(gbc);
if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
/* dithering flags */
if (s->dither_flag_syntax) {