Skip to content
Snippets Groups Projects
ac3dec.c 47.5 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * This code was developed as part of Google Summer of Code 2006.
     * E-AC-3 support was added as part of Google Summer of Code 2007.
    
     * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
    
     * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
    
     * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
    
     * http://liba52.sourceforge.net
    
     * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
     * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
    
     * This file is part of FFmpeg.
    
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU General Public
    
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
    
     * FFmpeg is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    
     * General Public License for more details.
    
     * You should have received a copy of the GNU General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include <stdio.h>
    #include <stddef.h>
    #include <math.h>
    #include <string.h>
    
    
    #include "libavutil/crc.h"
    
    #include "ac3dec_data.h"
    
    /** Large enough for maximum possible frame size when the specification limit is ignored */
    #define AC3_FRAME_BUFFER_SIZE 32768
    
    /**
     * table for ungrouping 3 values in 7 bits.
     * used for exponents and bap=2 mantissas
     */
    static uint8_t ungroup_3_in_7_bits_tab[128][3];
    
    /** tables for ungrouping mantissas */
    
    static int b1_mantissas[32][3];
    static int b2_mantissas[128][3];
    static int b3_mantissas[8];
    static int b4_mantissas[128][2];
    static int b5_mantissas[16];
    
    /**
     * Quantization table: levels for symmetric. bits for asymmetric.
     * reference: Table 7.18 Mapping of bap to Quantizer
     */
    
    static const uint8_t quantization_tab[16] = {
    
        0, 3, 5, 7, 11, 15,
        5, 6, 7, 8, 9, 10, 11, 12, 14, 16
    };
    
    /** dynamic range table. converts codes to scale factors. */
    
    static float dynamic_range_tab[256];
    
    /** Adjustments in dB gain */
    
    #define LEVEL_PLUS_3DB          1.4142135623730950
    #define LEVEL_PLUS_1POINT5DB    1.1892071150027209
    #define LEVEL_MINUS_1POINT5DB   0.8408964152537145
    
    #define LEVEL_MINUS_3DB         0.7071067811865476
    #define LEVEL_MINUS_4POINT5DB   0.5946035575013605
    #define LEVEL_MINUS_6DB         0.5000000000000000
    
    #define LEVEL_MINUS_9DB         0.3535533905932738
    
    #define LEVEL_ZERO              0.0000000000000000
    
    #define LEVEL_ONE               1.0000000000000000
    
    
    static const float gain_levels[9] = {
        LEVEL_PLUS_3DB,
        LEVEL_PLUS_1POINT5DB,
    
        LEVEL_MINUS_3DB,
        LEVEL_MINUS_4POINT5DB,
        LEVEL_MINUS_6DB,
    
    /**
     * Table for center mix levels
     * reference: Section 5.4.2.4 cmixlev
     */
    static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
    
    /**
     * Table for surround mix levels
     * reference: Section 5.4.2.5 surmixlev
     */
    static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
    
    
    /**
     * Table for default stereo downmixing coefficients
     * reference: Section 7.8.2 Downmixing Into Two Channels
     */
    static const uint8_t ac3_default_coeffs[8][5][2] = {
    
        { { 2, 7 }, { 7, 2 },                               },
        { { 4, 4 },                                         },
        { { 2, 7 }, { 7, 2 },                               },
        { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
        { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
        { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
        { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
        { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
    
    /**
     * Symmetrical Dequantization
     * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
     *            Tables 7.19 to 7.23
     */
    
    symmetric_dequant(int code, int levels)
    
        return ((code - (levels >> 1)) << 24) / levels;
    
    static av_cold void ac3_tables_init(void)
    
        /* generate table for ungrouping 3 values in 7 bits
           reference: Section 7.1.3 Exponent Decoding */
        for(i=0; i<128; i++) {
            ungroup_3_in_7_bits_tab[i][0] =  i / 25;
            ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
            ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
        }
    
    
        /* generate grouped mantissa tables
           reference: Section 7.3.5 Ungrouping of Mantissas */
        for(i=0; i<32; i++) {
            /* bap=1 mantissas */
    
            b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
            b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
            b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
    
        }
        for(i=0; i<128; i++) {
            /* bap=2 mantissas */
    
            b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
            b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
            b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
    
    
            /* bap=4 mantissas */
            b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
            b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
        }
        /* generate ungrouped mantissa tables
           reference: Tables 7.21 and 7.23 */
        for(i=0; i<7; i++) {
            /* bap=3 mantissas */
            b3_mantissas[i] = symmetric_dequant(i, 7);
        }
        for(i=0; i<15; i++) {
            /* bap=5 mantissas */
            b5_mantissas[i] = symmetric_dequant(i, 15);
        }
    
        /* generate dynamic range table
           reference: Section 7.7.1 Dynamic Range Control */
        for(i=0; i<256; i++) {
            int v = (i >> 5) - ((i >> 7) << 3) - 5;
    
            dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
    
    static av_cold int ac3_decode_init(AVCodecContext *avctx)
    
        AC3DecodeContext *s = avctx->priv_data;
        s->avctx = avctx;
    
        ff_mdct_init(&s->imdct_256, 8, 1);
        ff_mdct_init(&s->imdct_512, 9, 1);
    
        ff_kbd_window_init(s->window, 5.0, 256);
    
        dsputil_init(&s->dsp, avctx);
    
        av_lfg_init(&s->dith_state, 0);
    
        /* set bias values for float to int16 conversion */
    
        if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
    
            s->add_bias = 385.0f;
            s->mul_bias = 1.0f;
    
            s->add_bias = 0.0f;
            s->mul_bias = 32767.0f;
    
        /* allow downmixing to stereo or mono */
        if (avctx->channels > 0 && avctx->request_channels > 0 &&
                avctx->request_channels < avctx->channels &&
                avctx->request_channels <= 2) {
            avctx->channels = avctx->request_channels;
        }
    
        if (avctx->error_recognition >= FF_ER_CAREFUL) {
    
            s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
    
     * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
    
     * GetBitContext within AC3DecodeContext must point to
    
     * the start of the synchronized AC-3 bitstream.
    
    static int ac3_parse_header(AC3DecodeContext *s)
    
    {
        GetBitContext *gbc = &s->gbc;
        int i;
    
        /* read the rest of the bsi. read twice for dual mono mode. */
        i = !(s->channel_mode);
        do {
            skip_bits(gbc, 5); // skip dialog normalization
            if (get_bits1(gbc))
                skip_bits(gbc, 8); //skip compression
            if (get_bits1(gbc))
                skip_bits(gbc, 8); //skip language code
            if (get_bits1(gbc))
                skip_bits(gbc, 7); //skip audio production information
        } while (i--);
    
        skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
    
        /* skip the timecodes (or extra bitstream information for Alternate Syntax)
           TODO: read & use the xbsi1 downmix levels */
        if (get_bits1(gbc))
            skip_bits(gbc, 14); //skip timecode1 / xbsi1
        if (get_bits1(gbc))
            skip_bits(gbc, 14); //skip timecode2 / xbsi2
    
        /* skip additional bitstream info */
        if (get_bits1(gbc)) {
            i = get_bits(gbc, 6);
            do {
                skip_bits(gbc, 8);
            } while(i--);
        }
    
        return 0;
    }
    
    /**
    
     * Common function to parse AC-3 or E-AC-3 frame header
    
     */
    static int parse_frame_header(AC3DecodeContext *s)
    
        err = ff_ac3_parse_header(&s->gbc, &hdr);
    
        if(err)
            return err;
    
        /* get decoding parameters from header info */
    
        s->bit_alloc_params.sr_code     = hdr.sr_code;
        s->channel_mode                 = hdr.channel_mode;
    
        s->lfe_on                       = hdr.lfe_on;
    
        s->bit_alloc_params.sr_shift    = hdr.sr_shift;
    
        s->sample_rate                  = hdr.sample_rate;
    
        s->bit_rate                     = hdr.bit_rate;
        s->channels                     = hdr.channels;
        s->fbw_channels                 = s->channels - s->lfe_on;
        s->lfe_ch                       = s->fbw_channels + 1;
        s->frame_size                   = hdr.frame_size;
    
        s->center_mix_level             = hdr.center_mix_level;
        s->surround_mix_level           = hdr.surround_mix_level;
    
        s->frame_type                   = hdr.frame_type;
    
        s->substreamid                  = hdr.substreamid;
    
        if(s->lfe_on) {
            s->start_freq[s->lfe_ch] = 0;
            s->end_freq[s->lfe_ch] = 7;
            s->num_exp_groups[s->lfe_ch] = 2;
            s->channel_in_cpl[s->lfe_ch] = 0;
        }
    
    
        if (hdr.bitstream_id <= 10) {
            s->eac3                  = 0;
            s->snr_offset_strategy   = 2;
            s->block_switch_syntax   = 1;
            s->dither_flag_syntax    = 1;
            s->bit_allocation_syntax = 1;
            s->fast_gain_syntax      = 0;
            s->first_cpl_leak        = 0;
            s->dba_syntax            = 1;
            s->skip_syntax           = 1;
            memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            return ac3_parse_header(s);
    
            s->eac3 = 1;
            return ff_eac3_parse_header(s);
    
    }
    
    /**
     * Set stereo downmixing coefficients based on frame header info.
     * reference: Section 7.8.2 Downmixing Into Two Channels
     */
    static void set_downmix_coeffs(AC3DecodeContext *s)
    {
        int i;
    
        float cmix = gain_levels[center_levels[s->center_mix_level]];
        float smix = gain_levels[surround_levels[s->surround_mix_level]];
    
    Loren Merritt's avatar
    Loren Merritt committed
        float norm0, norm1;
    
        for(i=0; i<s->fbw_channels; i++) {
            s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
            s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
    
        if(s->channel_mode > 1 && s->channel_mode & 1) {
    
            s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
    
        if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
            int nf = s->channel_mode - 2;
    
            s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
    
        if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
            int nf = s->channel_mode - 4;
    
            s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
    
    Loren Merritt's avatar
    Loren Merritt committed
        /* renormalize */
        norm0 = norm1 = 0.0;
    
    Loren Merritt's avatar
    Loren Merritt committed
            norm0 += s->downmix_coeffs[i][0];
            norm1 += s->downmix_coeffs[i][1];
        }
        norm0 = 1.0f / norm0;
        norm1 = 1.0f / norm1;
        for(i=0; i<s->fbw_channels; i++) {
            s->downmix_coeffs[i][0] *= norm0;
            s->downmix_coeffs[i][1] *= norm1;
        }
    
        if(s->output_mode == AC3_CHMODE_MONO) {
            for(i=0; i<s->fbw_channels; i++)
                s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
    
     * Decode the grouped exponents according to exponent strategy.
     * reference: Section 7.1.3 Exponent Decoding
    
    static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
    
                                uint8_t absexp, int8_t *dexps)
    
        int i, j, grp, group_size;
    
        int dexp[256];
        int expacc, prevexp;
    
        /* unpack groups */
    
        group_size = exp_strategy + (exp_strategy == EXP_D45);
    
        for(grp=0,i=0; grp<ngrps; grp++) {
    
            expacc = get_bits(gbc, 7);
    
            dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
            dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
            dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
    
        /* convert to absolute exps and expand groups */
        prevexp = absexp;
    
            prevexp += dexp[i] - 2;
    
            if (prevexp > 24U)
    
            switch (group_size) {
                case 4: dexps[j++] = prevexp;
                        dexps[j++] = prevexp;
                case 2: dexps[j++] = prevexp;
                case 1: dexps[j++] = prevexp;
    
     * Generate transform coefficients for each coupled channel in the coupling
    
     * range using the coupling coefficients and coupling coordinates.
     * reference: Section 7.4.3 Coupling Coordinate Format
     */
    
    static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
    
        i = s->start_freq[CPL_CH];
        for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
    
                    for(ch=1; ch<=s->fbw_channels; ch++) {
    
                            s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
    
                                s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
    
            } while(s->cpl_band_struct[subbnd]);
    
    /**
     * Grouped mantissas for 3-level 5-level and 11-level quantization
     */
    typedef struct {
    
        int b1_mant[3];
        int b2_mant[3];
        int b4_mant[2];
    
        int b1ptr;
        int b2ptr;
        int b4ptr;
    
     * Decode the transform coefficients for a particular channel
    
     * reference: Section 7.3 Quantization and Decoding of Mantissas
     */
    
    static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
    
        GetBitContext *gbc = &s->gbc;
    
        exps = s->dexps[ch_index];
        bap = s->bap[ch_index];
    
        start = s->start_freq[ch_index];
        end = s->end_freq[ch_index];
    
                    coeffs[i] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
    
                        gcode = get_bits(gbc, 5);
    
                        m->b1_mant[0] = b1_mantissas[gcode][0];
                        m->b1_mant[1] = b1_mantissas[gcode][1];
                        m->b1_mant[2] = b1_mantissas[gcode][2];
                        m->b1ptr = 0;
    
                    coeffs[i] = m->b1_mant[m->b1ptr++];
    
                        gcode = get_bits(gbc, 7);
    
                        m->b2_mant[0] = b2_mantissas[gcode][0];
                        m->b2_mant[1] = b2_mantissas[gcode][1];
                        m->b2_mant[2] = b2_mantissas[gcode][2];
                        m->b2ptr = 0;
    
                    coeffs[i] = m->b2_mant[m->b2ptr++];
    
                    coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
    
                        gcode = get_bits(gbc, 7);
    
                        m->b4_mant[0] = b4_mantissas[gcode][0];
                        m->b4_mant[1] = b4_mantissas[gcode][1];
                        m->b4ptr = 0;
    
                    coeffs[i] = m->b4_mant[m->b4ptr++];
    
                    coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
    
                    /* asymmetric dequantization */
    
                    int qlevel = quantization_tab[tbap];
                    coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
    
     * Remove random dithering from coefficients with zero-bit mantissas
    
     * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
     */
    
    static void remove_dithering(AC3DecodeContext *s) {
    
        for(ch=1; ch<=s->fbw_channels; ch++) {
            if(!s->dither_flag[ch]) {
    
                bap = s->bap[ch];
                if(s->channel_in_cpl[ch])
                    end = s->start_freq[CPL_CH];
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                    if(!bap[i])
    
                if(s->channel_in_cpl[ch]) {
                    bap = s->bap[CPL_CH];
                    for(; i<s->end_freq[CPL_CH]; i++) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                        if(!bap[i])
    
    static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
    
                                        mant_groups *m)
    {
        if (!s->channel_uses_aht[ch]) {
    
            ac3_decode_transform_coeffs_ch(s, ch, m);
    
        } else {
            /* if AHT is used, mantissas for all blocks are encoded in the first
               block of the frame. */
            int bin;
            if (!blk)
    
                ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
    
            for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
                s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
            }
        }
    }
    
    
     * Decode the transform coefficients.
    
    static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
    
        m.b1ptr = m.b2ptr = m.b4ptr = 3;
    
        for (ch = 1; ch <= s->channels; ch++) {
    
            /* transform coefficients for full-bandwidth channel */
    
            /* tranform coefficients for coupling channel come right after the
               coefficients for the first coupled channel*/
    
                    calc_transform_coeffs_cpl(s);
    
                s->fixed_coeffs[ch][end] = 0;
    
        /* zero the dithered coefficients for appropriate channels */
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        remove_dithering(s);
    
     * reference: Section 7.5.4 Rematrixing : Decoding Technique
     */
    
    static void do_rematrixing(AC3DecodeContext *s)
    
        int bnd, i;
    
        end = FFMIN(s->end_freq[1], s->end_freq[2]);
    
        for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
            if(s->rematrixing_flags[bnd]) {
    
                bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
                for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
    
                    tmp0 = s->fixed_coeffs[1][i];
                    tmp1 = s->fixed_coeffs[2][i];
                    s->fixed_coeffs[1][i] = tmp0 + tmp1;
                    s->fixed_coeffs[2][i] = tmp0 - tmp1;
    
    /**
     * Inverse MDCT Transform.
     * Convert frequency domain coefficients to time-domain audio samples.
     * reference: Section 7.9.4 Transformation Equations
     */
    
    static inline void do_imdct(AC3DecodeContext *s, int channels)
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        int ch;
    
        float add_bias = s->add_bias;
        if(s->out_channels==1 && channels>1)
            add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
    
        for (ch=1; ch<=channels; ch++) {
    
    Loren Merritt's avatar
    Loren Merritt committed
                int i;
                float *x = s->tmp_output+128;
                for(i=0; i<128; i++)
                    x[i] = s->transform_coeffs[ch][2*i];
                ff_imdct_half(&s->imdct_256, s->tmp_output, x);
    
                s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
    
    Loren Merritt's avatar
    Loren Merritt committed
                for(i=0; i<128; i++)
                    x[i] = s->transform_coeffs[ch][2*i+1];
                ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
    
    Loren Merritt's avatar
    Loren Merritt committed
                ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
    
                s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
    
    Loren Merritt's avatar
    Loren Merritt committed
                memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
    
     * Downmix the output to mono or stereo.
    
    Loren Merritt's avatar
    Loren Merritt committed
    void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
    
    Loren Merritt's avatar
    Loren Merritt committed
        if(out_ch == 2) {
            for(i=0; i<len; i++) {
    
    Loren Merritt's avatar
    Loren Merritt committed
                v0 = v1 = 0.0f;
    
    Loren Merritt's avatar
    Loren Merritt committed
                for(j=0; j<in_ch; j++) {
                    v0 += samples[j][i] * matrix[j][0];
                    v1 += samples[j][i] * matrix[j][1];
    
    Loren Merritt's avatar
    Loren Merritt committed
                }
                samples[0][i] = v0;
                samples[1][i] = v1;
    
    Loren Merritt's avatar
    Loren Merritt committed
        } else if(out_ch == 1) {
            for(i=0; i<len; i++) {
    
    Loren Merritt's avatar
    Loren Merritt committed
                v0 = 0.0f;
    
    Loren Merritt's avatar
    Loren Merritt committed
                for(j=0; j<in_ch; j++)
                    v0 += samples[j][i] * matrix[j][0];
    
    Loren Merritt's avatar
    Loren Merritt committed
                samples[0][i] = v0;
    
    /**
     * Upmix delay samples from stereo to original channel layout.
     */
    static void ac3_upmix_delay(AC3DecodeContext *s)
    {
    
        int channel_data_size = sizeof(s->delay[0]);
    
        switch(s->channel_mode) {
            case AC3_CHMODE_DUALMONO:
            case AC3_CHMODE_STEREO:
                /* upmix mono to stereo */
                memcpy(s->delay[1], s->delay[0], channel_data_size);
                break;
            case AC3_CHMODE_2F2R:
                memset(s->delay[3], 0, channel_data_size);
            case AC3_CHMODE_2F1R:
                memset(s->delay[2], 0, channel_data_size);
                break;
            case AC3_CHMODE_3F2R:
                memset(s->delay[4], 0, channel_data_size);
            case AC3_CHMODE_3F1R:
                memset(s->delay[3], 0, channel_data_size);
            case AC3_CHMODE_3F:
                memcpy(s->delay[2], s->delay[1], channel_data_size);
                memset(s->delay[1], 0, channel_data_size);
                break;
        }
    }
    
    
    /**
     * Decode band structure for coupling, spectral extension, or enhanced coupling.
     * @param[in] gbc bit reader context
     * @param[in] blk block number
     * @param[in] eac3 flag to indicate E-AC-3
     * @param[in] ecpl flag to indicate enhanced coupling
     * @param[in] start_subband subband number for start of range
     * @param[in] end_subband subband number for end of range
     * @param[in] default_band_struct default band structure table
     * @param[out] band_struct decoded band structure
     * @param[out] num_subbands number of subbands (optionally NULL)
     * @param[out] num_bands number of bands (optionally NULL)
     * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
     */
    static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
                                      int ecpl, int start_subband, int end_subband,
                                      const uint8_t *default_band_struct,
                                      uint8_t *band_struct, int *num_subbands,
    
                                      int *num_bands, uint8_t *band_sizes)
    
        int subbnd, bnd, n_subbands, n_bands=0;
    
        uint8_t bnd_sz[22];
    
    
        n_subbands = end_subband - start_subband;
    
        /* decode band structure from bitstream or use default */
        if (!eac3 || get_bits1(gbc)) {
            for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
                band_struct[subbnd] = get_bits1(gbc);
            }
        } else if (!blk) {
            memcpy(band_struct,
                   &default_band_struct[start_subband+1],
                   n_subbands-1);
        }
        band_struct[n_subbands-1] = 0;
    
        /* calculate number of bands and band sizes based on band structure.
           note that the first 4 subbands in enhanced coupling span only 6 bins
           instead of 12. */
        if (num_bands || band_sizes ) {
    
            bnd_sz[0] = ecpl ? 6 : 12;
            for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
                int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
                if (band_struct[subbnd-1]) {
                    n_bands--;
                    bnd_sz[bnd] += subbnd_size;
                } else {
                    bnd_sz[++bnd] = subbnd_size;
                }
            }
        }
    
        /* set optional output params */
        if (num_subbands)
            *num_subbands = n_subbands;
        if (num_bands)
            *num_bands = n_bands;
        if (band_sizes)
    
            memcpy(band_sizes, bnd_sz, n_bands);
    
     * Decode a single audio block from the AC-3 bitstream.
    
    static int decode_audio_block(AC3DecodeContext *s, int blk)
    
        int fbw_channels = s->fbw_channels;
        int channel_mode = s->channel_mode;
    
        int different_transforms;
        int downmix_output;
    
        GetBitContext *gbc = &s->gbc;
    
        if (s->block_switch_syntax) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            for (ch = 1; ch <= fbw_channels; ch++) {
                s->block_switch[ch] = get_bits1(gbc);
                if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
                    different_transforms = 1;
            }
    
        if (s->dither_flag_syntax) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            for (ch = 1; ch <= fbw_channels; ch++) {
                s->dither_flag[ch] = get_bits1(gbc);
            }
    
        /* dynamic range */
    
            if(get_bits1(gbc)) {
    
                s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
    
                                      s->avctx->drc_scale)+1.0;
    
        /* spectral extension strategy */
        if (s->eac3 && (!blk || get_bits1(gbc))) {
    
                ff_log_missing_feature(s->avctx, "Spectral extension", 1);
    
            /* TODO: parse spectral extension strategy info */
    
        /* TODO: spectral extension coordinates */
    
        if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                s->cpl_in_use[blk] = get_bits1(gbc);
    
                int cpl_start_subband, cpl_end_subband;
    
                if (channel_mode < AC3_CHMODE_STEREO) {
                    av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
                    return -1;
                }
    
    
                /* check for enhanced coupling */
                if (s->eac3 && get_bits1(gbc)) {
                    /* TODO: parse enhanced coupling strategy info */
    
                    ff_log_missing_feature(s->avctx, "Enhanced coupling", 1);
    
                /* determine which channels are coupled */
    
                if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
                    s->channel_in_cpl[1] = 1;
                    s->channel_in_cpl[2] = 1;
                } else {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                    for (ch = 1; ch <= fbw_channels; ch++)
                        s->channel_in_cpl[ch] = get_bits1(gbc);
    
                if (channel_mode == AC3_CHMODE_STEREO)
    
                    s->phase_flags_in_use = get_bits1(gbc);
    
                /* coupling frequency range */
    
                /* TODO: modify coupling end freq if spectral extension is used */
    
                cpl_start_subband = get_bits(gbc, 4);
    
                cpl_end_subband   = get_bits(gbc, 4) + 3;
    
                s->num_cpl_subbands = cpl_end_subband - cpl_start_subband;
                if (s->num_cpl_subbands < 0) {
                    av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d > %d)\n",
                           cpl_start_subband, cpl_end_subband);
    
                s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
    
                s->end_freq[CPL_CH]   = cpl_end_subband   * 12 + 37;
    
               decode_band_structure(gbc, blk, s->eac3, 0,
                                     cpl_start_subband, cpl_end_subband,
                                     ff_eac3_default_cpl_band_struct,
                                     s->cpl_band_struct, &s->num_cpl_subbands,
                                     &s->num_cpl_bands, NULL);
    
            } else {
    
                for (ch = 1; ch <= fbw_channels; ch++) {
    
                    s->first_cpl_coords[ch] = 1;
                }
    
                s->first_cpl_leak = s->eac3;
    
                s->phase_flags_in_use = 0;
    
        } else if (!s->eac3) {
            if(!blk) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
                return -1;
            } else {
                s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
            }
    
            int cpl_coords_exist = 0;
    
            for (ch = 1; ch <= fbw_channels; ch++) {
    
                    if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
    
                        int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
    
                        s->first_cpl_coords[ch] = 0;
    
                        cpl_coords_exist = 1;
    
                        master_cpl_coord = 3 * get_bits(gbc, 2);
    
                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
    
                            cpl_coord_exp = get_bits(gbc, 4);
                            cpl_coord_mant = get_bits(gbc, 4);
    
                            if (cpl_coord_exp == 15)
    
                                s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
    
                                s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
                            s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
    
                    } else if (!blk) {
                        av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
                        return -1;
    
                } else {
                    /* channel not in coupling */
                    s->first_cpl_coords[ch] = 1;
    
            if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
    
                for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
    
                    s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
    
        /* stereo rematrixing strategy and band structure */
    
        if (channel_mode == AC3_CHMODE_STEREO) {
    
            if ((s->eac3 && !blk) || get_bits1(gbc)) {
    
                s->num_rematrixing_bands = 4;
    
                if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
                    s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
    
                for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
                    s->rematrixing_flags[bnd] = get_bits1(gbc);
    
            } else if (!blk) {
                av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
                return -1;
    
        /* exponent strategies for each channel */
    
        for (ch = !cpl_in_use; ch <= s->channels; ch++) {
    
                s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
    
            if(s->exp_strategy[blk][ch] != EXP_REUSE)
    
        for (ch = 1; ch <= fbw_channels; ch++) {
    
            if (s->exp_strategy[blk][ch] != EXP_REUSE) {
    
                int prev = s->end_freq[ch];
                if (s->channel_in_cpl[ch])
                    s->end_freq[ch] = s->start_freq[CPL_CH];
    
                    int bandwidth_code = get_bits(gbc, 6);
    
                    if (bandwidth_code > 60) {
    
                        av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
    
                    s->end_freq[ch] = bandwidth_code * 3 + 73;
    
                group_size = 3 << (s->exp_strategy[blk][ch] - 1);
    
                s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
    
                if(blk > 0 && s->end_freq[ch] != prev)
    
        if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
    
            s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
    
                                        (3 << (s->exp_strategy[blk][CPL_CH] - 1));
    
        /* decode exponents for each channel */
    
        for (ch = !cpl_in_use; ch <= s->channels; ch++) {
    
            if (s->exp_strategy[blk][ch] != EXP_REUSE) {
    
                s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
    
                if (decode_exponents(gbc, s->exp_strategy[blk][ch],