Skip to content
Snippets Groups Projects
ac3dec.c 33.7 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * This code is developed as part of Google Summer of Code 2006 Program.
     *
    
     * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
    
     * http://liba52.sourceforge.net
    
     * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
     * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
    
     * This file is part of FFmpeg.
    
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU General Public
    
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
    
     * FFmpeg is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    
     * General Public License for more details.
    
     * You should have received a copy of the GNU General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include <stdio.h>
    #include <stddef.h>
    #include <math.h>
    #include <string.h>
    
    
    #include "bitstream.h"
    #include "dsputil.h"
    
    #include "random.h"
    
    /**
     * Table of bin locations for rematrixing bands
     * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
     */
    static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
    
    
    /* table for exponent to scale_factor mapping
     * scale_factor[i] = 2 ^ -(i + 15)
     */
    static float scale_factors[25];
    
    
    /** table for grouping exponents */
    static uint8_t exp_ungroup_tbl[128][3];
    
    /** tables for ungrouping mantissas */
    static float b1_mantissas[32][3];
    static float b2_mantissas[128][3];
    static float b3_mantissas[8];
    static float b4_mantissas[128][2];
    static float b5_mantissas[16];
    
    /**
     * Quantization table: levels for symmetric. bits for asymmetric.
     * reference: Table 7.18 Mapping of bap to Quantizer
     */
    static const uint8_t qntztab[16] = {
        0, 3, 5, 7, 11, 15,
        5, 6, 7, 8, 9, 10, 11, 12, 14, 16
    };
    
    /** dynamic range table. converts codes to scale factors. */
    static float dynrng_tbl[256];
    
    
    /* Adjustmens in dB gain */
    #define LEVEL_MINUS_3DB         0.7071067811865476
    #define LEVEL_MINUS_4POINT5DB   0.5946035575013605
    #define LEVEL_MINUS_6DB         0.5000000000000000
    #define LEVEL_PLUS_3DB          1.4142135623730951
    #define LEVEL_PLUS_6DB          2.0000000000000000
    #define LEVEL_ZERO              0.0000000000000000
    
    static const float clevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB,
        LEVEL_MINUS_6DB, LEVEL_MINUS_4POINT5DB };
    
    static const float slevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO, LEVEL_MINUS_6DB };
    
    
    /* override ac3.h to include coupling channel */
    #undef AC3_MAX_CHANNELS
    #define AC3_MAX_CHANNELS 7
    #define CPL_CH 0
    
    
        int acmod;
        int cmixlev;
        int surmixlev;
        int dsurmod;
    
        int blksw[AC3_MAX_CHANNELS];
        int dithflag[AC3_MAX_CHANNELS];
    
        int cplinu;
        int chincpl[AC3_MAX_CHANNELS];
        int phsflginu;
    
        int cplbndstrc[18];
    
        int nrematbnd;
    
        int rematflg[4];
    
        int expstr[AC3_MAX_CHANNELS];
        int snroffst[AC3_MAX_CHANNELS];
        int fgain[AC3_MAX_CHANNELS];
        int deltbae[AC3_MAX_CHANNELS];
        int deltnseg[AC3_MAX_CHANNELS];
        uint8_t  deltoffst[AC3_MAX_CHANNELS][8];
        uint8_t  deltlen[AC3_MAX_CHANNELS][8];
        uint8_t  deltba[AC3_MAX_CHANNELS][8];
    
    
        /* Derived Attributes. */
        int      sampling_rate;
        int      bit_rate;
        int      frame_size;
    
    
        int      nchans;            //number of total channels
        int      nfchans;           //number of full-bandwidth channels
    
        int      lfeon;             //lfe channel in use
    
        int      output_mode;       ///< output channel configuration
        int      out_channels;      ///< number of output channels
    
    
        float    dynrng;            //dynamic range gain
        float    dynrng2;           //dynamic range gain for 1+1 mode
    
        float    cplco[AC3_MAX_CHANNELS][18];   //coupling coordinates
    
        int      ncplbnd;           //number of coupling bands
        int      ncplsubnd;         //number of coupling sub bands
    
        int      startmant[AC3_MAX_CHANNELS];   ///< start frequency bin
        int      endmant[AC3_MAX_CHANNELS];     //channel end mantissas
    
        AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
    
        int8_t   dexps[AC3_MAX_CHANNELS][256];  ///< decoded exponents
        uint8_t  bap[AC3_MAX_CHANNELS][256];    ///< bit allocation pointers
        int16_t  psd[AC3_MAX_CHANNELS][256];    ///< scaled exponents
        int16_t  bndpsd[AC3_MAX_CHANNELS][50];  ///< interpolated exponents
        int16_t  mask[AC3_MAX_CHANNELS][50];    ///< masking curve values
    
        DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]);  //transform coefficients
    
        MDCTContext imdct_512;  //for 512 sample imdct transform
        MDCTContext imdct_256;  //for 256 sample imdct transform
    
        DSPContext  dsp;        //for optimization
    
        float       add_bias;   ///< offset for float_to_int16 conversion
        float       mul_bias;   ///< scaling for float_to_int16 conversion
    
        DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); //output after imdct transform and windowing
    
        DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
    
        DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]);  //delay - added to the next block
    
        DECLARE_ALIGNED_16(float, tmp_imdct[256]);                  //temporary storage for imdct transform
        DECLARE_ALIGNED_16(float, tmp_output[512]);                 //temporary storage for output before windowing
        DECLARE_ALIGNED_16(float, window[256]);                     //window coefficients
    
        AVRandomState dith_state;   //for dither generation
    
    /*********** BEGIN INIT HELPER FUNCTIONS ***********/
    
    /**
     * Generate a Kaiser-Bessel Derived Window.
     */
    
    static void ac3_window_init(float *window)
    
       int i, j;
       double sum = 0.0, bessel, tmp;
       double local_window[256];
       double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
    
       for (i = 0; i < 256; i++) {
           tmp = i * (256 - i) * alpha2;
           bessel = 1.0;
           for (j = 100; j > 0; j--) /* defaul to 100 iterations */
               bessel = bessel * tmp / (j * j) + 1;
           sum += bessel;
           local_window[i] = sum;
       }
    
       sum++;
       for (i = 0; i < 256; i++)
           window[i] = sqrt(local_window[i] / sum);
    
    static inline float
    symmetric_dequant(int code, int levels)
    
        return (code - (levels >> 1)) * (2.0f / levels);
    
    static void ac3_tables_init(void)
    
        /* generate grouped mantissa tables
           reference: Section 7.3.5 Ungrouping of Mantissas */
        for(i=0; i<32; i++) {
            /* bap=1 mantissas */
            b1_mantissas[i][0] = symmetric_dequant( i / 9     , 3);
            b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
            b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
        }
        for(i=0; i<128; i++) {
            /* bap=2 mantissas */
            b2_mantissas[i][0] = symmetric_dequant( i / 25     , 5);
            b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
            b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
    
            /* bap=4 mantissas */
            b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
            b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
        }
        /* generate ungrouped mantissa tables
           reference: Tables 7.21 and 7.23 */
        for(i=0; i<7; i++) {
            /* bap=3 mantissas */
            b3_mantissas[i] = symmetric_dequant(i, 7);
        }
        for(i=0; i<15; i++) {
            /* bap=5 mantissas */
            b5_mantissas[i] = symmetric_dequant(i, 15);
        }
    
        /* generate dynamic range table
           reference: Section 7.7.1 Dynamic Range Control */
        for(i=0; i<256; i++) {
            int v = (i >> 5) - ((i >> 7) << 3) - 5;
            dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
        }
    
    
        //generate scale factors
        for (i = 0; i < 25; i++)
    
            scale_factors[i] = pow(2.0, -i);
    
    
        /* generate exponent tables
           reference: Section 7.1.3 Exponent Decoding */
        for(i=0; i<128; i++) {
            exp_ungroup_tbl[i][0] =  i / 25;
            exp_ungroup_tbl[i][1] = (i % 25) / 5;
            exp_ungroup_tbl[i][2] = (i % 25) % 5;
        }
    
    
    static int ac3_decode_init(AVCodecContext *avctx)
    {
        AC3DecodeContext *ctx = avctx->priv_data;
    
    
        ff_mdct_init(&ctx->imdct_256, 8, 1);
        ff_mdct_init(&ctx->imdct_512, 9, 1);
    
        dsputil_init(&ctx->dsp, avctx);
    
        av_init_random(0, &ctx->dith_state);
    
        if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
            ctx->add_bias = 385.0f;
            ctx->mul_bias = 1.0f;
        } else {
            ctx->add_bias = 0.0f;
            ctx->mul_bias = 32767.0f;
        }
    
    
    /*********** END INIT FUNCTIONS ***********/
    
    /**
     * Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
    
     * GetBitContext within AC3DecodeContext must point to
     * start of the synchronized ac3 bitstream.
     */
    
    static int ac3_parse_header(AC3DecodeContext *ctx)
    
        int err, i;
    
        err = ff_ac3_parse_header(gb->buffer, &hdr);
        if(err)
            return err;
    
        /* get decoding parameters from header info */
        ctx->bit_alloc_params.fscod       = hdr.fscod;
        ctx->acmod                        = hdr.acmod;
        ctx->cmixlev                      = hdr.cmixlev;
        ctx->surmixlev                    = hdr.surmixlev;
        ctx->dsurmod                      = hdr.dsurmod;
        ctx->lfeon                        = hdr.lfeon;
        ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
        ctx->sampling_rate                = hdr.sample_rate;
        ctx->bit_rate                     = hdr.bit_rate;
        ctx->nchans                       = hdr.channels;
        ctx->nfchans                      = ctx->nchans - ctx->lfeon;
    
    
        /* set default output to all source channels */
        ctx->out_channels = ctx->nchans;
        ctx->output_mode = ctx->acmod;
    
            ctx->output_mode |= AC3_OUTPUT_LFEON;
    
    
        /* skip over portion of header which has already been read */
    
        skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
    
        skip_bits(gb, 16); // skip crc1
        skip_bits(gb, 8);  // skip fscod and frmsizecod
        skip_bits(gb, 11); // skip bsid, bsmod, and acmod
        if(ctx->acmod == AC3_ACMOD_STEREO) {
            skip_bits(gb, 2); // skip dsurmod
        } else {
            if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
                skip_bits(gb, 2); // skip cmixlev
            if(ctx->acmod & 4)
                skip_bits(gb, 2); // skip surmixlev
    
        /* read the rest of the bsi. read twice for dual mono mode. */
    
        i = !(ctx->acmod);
        do {
            skip_bits(gb, 5); //skip dialog normalization
            if (get_bits1(gb))
                skip_bits(gb, 8); //skip compression
            if (get_bits1(gb))
                skip_bits(gb, 8); //skip language code
            if (get_bits1(gb))
                skip_bits(gb, 7); //skip audio production information
        } while (i--);
    
        skip_bits(gb, 2); //skip copyright bit and original bitstream bit
    
    
        /* FIXME: read & use the xbsi1 downmix levels */
    
            skip_bits(gb, 14); //skip timecode1
    
            skip_bits(gb, 14); //skip timecode2
    
    
            i = get_bits(gb, 6); //additional bsi length
    
    /**
     * Decodes the grouped exponents.
    
     * This function decodes the coded exponents according to exponent strategy
     * and stores them in the decoded exponents buffer.
     *
    
     * @param[in]  gb      GetBitContext which points to start of coded exponents
     * @param[in]  expstr  Exponent coding strategy
     * @param[in]  ngrps   Number of grouped exponents
     * @param[in]  absexp  Absolute exponent or DC exponent
     * @param[out] dexps   Decoded exponents are stored in dexps
    
    static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
    
        int i, j, grp, grpsize;
        int dexp[256];
        int expacc, prevexp;
    
        /* unpack groups */
        grpsize = expstr + (expstr == EXP_D45);
        for(grp=0,i=0; grp<ngrps; grp++) {
            expacc = get_bits(gb, 7);
            dexp[i++] = exp_ungroup_tbl[expacc][0];
            dexp[i++] = exp_ungroup_tbl[expacc][1];
            dexp[i++] = exp_ungroup_tbl[expacc][2];
        }
    
        /* convert to absolute exps and expand groups */
        prevexp = absexp;
        for(i=0; i<ngrps*3; i++) {
            prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
            for(j=0; j<grpsize; j++) {
                dexps[(i*grpsize)+j] = prevexp;
    
    /**
     * Generates transform coefficients for each coupled channel in the coupling
     * range using the coupling coefficients and coupling coordinates.
     * reference: Section 7.4.3 Coupling Coordinate Format
     */
    static void uncouple_channels(AC3DecodeContext *ctx)
    {
        int i, j, ch, bnd, subbnd;
    
        subbnd = -1;
    
        for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
            do {
                subbnd++;
                for(j=0; j<12; j++) {
                    for(ch=1; ch<=ctx->nfchans; ch++) {
    
                        if(ctx->chincpl[ch])
                            ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f;
    
            } while(ctx->cplbndstrc[subbnd]);
    
    typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
    
        float b1_mant[3];
        float b2_mant[3];
        float b4_mant[2];
        int b1ptr;
        int b2ptr;
        int b4ptr;
    
    /* Get the transform coefficients for particular channel */
    
    static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
    
        uint8_t *exps;
        uint8_t *bap;
        float *coeffs;
    
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        exps = ctx->dexps[ch_index];
        bap = ctx->bap[ch_index];
        coeffs = ctx->transform_coeffs[ch_index];
        start = ctx->startmant[ch_index];
        end = ctx->endmant[ch_index];
    
                    coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
    
                        m->b1_mant[0] = b1_mantissas[gcode][0];
                        m->b1_mant[1] = b1_mantissas[gcode][1];
                        m->b1_mant[2] = b1_mantissas[gcode][2];
                        m->b1ptr = 0;
    
                    coeffs[i] = m->b1_mant[m->b1ptr++];
    
                        m->b2_mant[0] = b2_mantissas[gcode][0];
                        m->b2_mant[1] = b2_mantissas[gcode][1];
                        m->b2_mant[2] = b2_mantissas[gcode][2];
                        m->b2ptr = 0;
    
                    coeffs[i] = m->b2_mant[m->b2ptr++];
    
                    coeffs[i] = b3_mantissas[get_bits(gb, 3)];
    
                        m->b4_mant[0] = b4_mantissas[gcode][0];
                        m->b4_mant[1] = b4_mantissas[gcode][1];
                        m->b4ptr = 0;
    
                    coeffs[i] = m->b4_mant[m->b4ptr++];
    
                    coeffs[i] = b5_mantissas[get_bits(gb, 4)];
    
                    coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
    
            coeffs[i] *= scale_factors[exps[i]];
    
    /**
     * Removes random dithering from coefficients with zero-bit mantissas
     * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
     */
    static void remove_dithering(AC3DecodeContext *ctx) {
        int ch, i;
        int end=0;
        float *coeffs;
        uint8_t *bap;
    
        for(ch=1; ch<=ctx->nfchans; ch++) {
    
                bap = ctx->bap[ch];
                if(ctx->chincpl[ch])
                    end = ctx->startmant[CPL_CH];
    
                if(ctx->chincpl[ch]) {
                    bap = ctx->bap[CPL_CH];
                    for(; i<ctx->endmant[CPL_CH]; i++) {
    
    /* Get the transform coefficients.
     * This function extracts the tranform coefficients form the ac3 bitstream.
     * This function is called after bit allocation is performed.
     */
    
    static int get_transform_coeffs(AC3DecodeContext * ctx)
    {
    
        m.b1ptr = m.b2ptr = m.b4ptr = 3;
    
            /* transform coefficients for individual channel */
    
            if (get_transform_coeffs_ch(ctx, ch, &m))
    
                return -1;
            /* tranform coefficients for coupling channels */
    
                        av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
    
        /* if any channel doesn't use dithering, zero appropriate coefficients */
        if(!ctx->dither_all)
            remove_dithering(ctx);
    
    
    /**
     * Performs stereo rematrixing.
     * reference: Section 7.5.4 Rematrixing : Decoding Technique
     */
    
    static void do_rematrixing(AC3DecodeContext *ctx)
    {
    
        int bnd, i;
    
        float tmp0, tmp1;
    
        for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
            if(ctx->rematflg[bnd]) {
                bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
                for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
                    tmp0 = ctx->transform_coeffs[1][i];
                    tmp1 = ctx->transform_coeffs[2][i];
                    ctx->transform_coeffs[1][i] = tmp0 + tmp1;
                    ctx->transform_coeffs[2][i] = tmp0 - tmp1;
                }
            }
    
    /* This function performs the imdct on 256 sample transform
     * coefficients.
     */
    
    static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        int i, k;
    
        DECLARE_ALIGNED_16(float, x[128]);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        FFTComplex z[2][64];
        float *o_ptr = ctx->tmp_output;
    
        for(i=0; i<2; i++) {
            /* de-interleave coefficients */
            for(k=0; k<128; k++) {
                x[k] = ctx->transform_coeffs[chindex][2*k+i];
            }
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            /* run standard IMDCT */
            ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
    
            /* reverse the post-rotation & reordering from standard IMDCT */
            for(k=0; k<32; k++) {
                z[i][32+k].re = -o_ptr[128+2*k];
                z[i][32+k].im = -o_ptr[2*k];
                z[i][31-k].re =  o_ptr[2*k+1];
                z[i][31-k].im =  o_ptr[128+2*k+1];
            }
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        /* apply AC-3 post-rotation & reordering */
        for(k=0; k<64; k++) {
            o_ptr[    2*k  ] = -z[0][   k].im;
            o_ptr[    2*k+1] =  z[0][63-k].re;
            o_ptr[128+2*k  ] = -z[0][   k].re;
            o_ptr[128+2*k+1] =  z[0][63-k].im;
            o_ptr[256+2*k  ] = -z[1][   k].re;
            o_ptr[256+2*k+1] =  z[1][63-k].im;
            o_ptr[384+2*k  ] =  z[1][   k].im;
            o_ptr[384+2*k+1] = -z[1][63-k].re;
        }
    
    static inline void do_imdct(AC3DecodeContext *ctx)
    {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        int ch;
    
        nchans = ctx->nfchans;
        if(ctx->output_mode & AC3_OUTPUT_LFEON)
            nchans++;
    
        for (ch=1; ch<=nchans; ch++) {
            if (ctx->blksw[ch]) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                do_imdct_256(ctx, ch);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
                                              ctx->transform_coeffs[ch],
                                              ctx->tmp_imdct);
    
            ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
    
                                         ctx->window, ctx->delay[ch-1], ctx->add_bias, 256, 1);
    
            ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                                         ctx->window, 256);
    
    /* Parse the audio block from ac3 bitstream.
     * This function extract the audio block from the ac3 bitstream
     * and produces the output for the block. This function must
     * be called for each of the six audio block in the ac3 bitstream.
     */
    
    static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
    
        int nfchans = ctx->nfchans;
        int acmod = ctx->acmod;
    
        memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
    
        for (ch = 1; ch <= nfchans; ch++) /*block switch flag */
    
            ctx->blksw[ch] = get_bits1(gb);
    
        for (ch = 1; ch <= nfchans; ch++) { /* dithering flag */
    
            ctx->dithflag[ch] = get_bits1(gb);
            if(!ctx->dithflag[ch])
    
        if (get_bits1(gb)) { /* dynamic range */
    
            ctx->dynrng = dynrng_tbl[get_bits(gb, 8)];
    
        if(acmod == AC3_ACMOD_DUALMONO) { /* dynamic range 1+1 mode */
            if(get_bits1(gb)) {
    
                ctx->dynrng2 = dynrng_tbl[get_bits(gb, 8)];
    
        if (get_bits1(gb)) { /* coupling strategy */
    
            ctx->cplinu = get_bits1(gb);
            if (ctx->cplinu) { /* coupling in use */
    
                    ctx->chincpl[ch] = get_bits1(gb);
    
                if (acmod == AC3_ACMOD_STEREO)
    
                    ctx->phsflginu = get_bits1(gb); //phase flag in use
    
    
                cplbegf = get_bits(gb, 4);
                cplendf = get_bits(gb, 4);
    
                if (3 + cplendf - cplbegf < 0) {
                    av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
    
                ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
    
                ctx->startmant[CPL_CH] = cplbegf * 12 + 37;
                ctx->endmant[CPL_CH] = cplendf * 12 + 73;
    
                for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) { /* coupling band structure */
    
            } else {
    
                    if (get_bits1(gb)) { /* coupling co-ordinates */
    
                        int mstrcplco, cplcoexp, cplcomant;
    
                        mstrcplco = 3 * get_bits(gb, 2);
    
                        for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
    
                            cplcoexp = get_bits(gb, 4);
                            cplcomant = get_bits(gb, 4);
                            if (cplcoexp == 15)
    
                                ctx->cplco[ch][bnd] = cplcomant / 16.0f;
    
                                ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f;
                            ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco];
    
            if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) {
                for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
    
        if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
    
            ctx->rematstr = get_bits1(gb);
            if (ctx->rematstr) {
    
                ctx->nrematbnd = 4;
    
                if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61)
                    ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37);
    
                for(bnd=0; bnd<ctx->nrematbnd; bnd++)
                    ctx->rematflg[bnd] = get_bits1(gb);
    
        ctx->expstr[CPL_CH] = EXP_REUSE;
        ctx->expstr[ctx->lfe_ch] = EXP_REUSE;
        for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
            if(ch == ctx->lfe_ch)
                ctx->expstr[ch] = get_bits(gb, 1);
            else
                ctx->expstr[ch] = get_bits(gb, 2);
            if(ctx->expstr[ch] != EXP_REUSE)
                bit_alloc_stages[ch] = 3;
        }
    
        for (ch = 1; ch <= nfchans; ch++) { /* channel bandwidth code */
            ctx->startmant[ch] = 0;
            if (ctx->expstr[ch] != EXP_REUSE) {
                int prev = ctx->endmant[ch];
    
                    int chbwcod = get_bits(gb, 6);
    
                    if (chbwcod > 60) {
                        av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
    
                    ctx->endmant[ch] = chbwcod * 3 + 73;
    
                if(blk > 0 && ctx->endmant[ch] != prev)
                    memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
    
        ctx->startmant[ctx->lfe_ch] = 0;
        ctx->endmant[ctx->lfe_ch] = 7;
    
        for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
            if (ctx->expstr[ch] != EXP_REUSE) {
                int grpsize, ngrps;
                grpsize = 3 << (ctx->expstr[ch] - 1);
                if(ch == CPL_CH)
                    ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize;
                else if(ch == ctx->lfe_ch)
                    ngrps = 2;
                else
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                    ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize;
    
                ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
                decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0],
                                 &ctx->dexps[ch][ctx->startmant[ch]+!!ch]);
                if(ch != CPL_CH && ch != ctx->lfe_ch)
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                    skip_bits(gb, 2); /* skip gainrng */
    
        if (get_bits1(gb)) { /* bit allocation information */
    
            ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
            ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
            ctx->bit_alloc_params.sgain  = ff_sgaintab[get_bits(gb, 2)];
            ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
            ctx->bit_alloc_params.floor  = ff_floortab[get_bits(gb, 3)];
    
            for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
            }
    
        if (get_bits1(gb)) { /* snroffset */
    
            int csnr;
            csnr = (get_bits(gb, 6) - 15) << 4;
    
            for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */
    
                ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2;
                ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)];
    
    
        if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
    
            ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
            ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
    
            bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
    
        if (get_bits1(gb)) { /* delta bit allocation information */
    
                ctx->deltbae[ch] = get_bits(gb, 2);
                if (ctx->deltbae[ch] == DBA_RESERVED) {
    
                    av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
                    return -1;
                }
    
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
    
                if (ctx->deltbae[ch] == DBA_NEW) {/*channel delta offset, len and bit allocation */
                    ctx->deltnseg[ch] = get_bits(gb, 3);
                    for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) {
                        ctx->deltoffst[ch][seg] = get_bits(gb, 5);
                        ctx->deltlen[ch][seg] = get_bits(gb, 4);
                        ctx->deltba[ch][seg] = get_bits(gb, 3);
    
                ctx->deltbae[ch] = DBA_NONE;
    
        for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
            if(bit_alloc_stages[ch] > 2) {
                /* Exponent mapping into PSD and PSD integration */
                ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
                                          ctx->startmant[ch], ctx->endmant[ch],
                                          ctx->psd[ch], ctx->bndpsd[ch]);
    
            if(bit_alloc_stages[ch] > 1) {
                /* Compute excitation function, Compute masking curve, and
                   Apply delta bit allocation */
                ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch],
                                           ctx->startmant[ch], ctx->endmant[ch],
                                           ctx->fgain[ch], (ch == ctx->lfe_ch),
                                           ctx->deltbae[ch], ctx->deltnseg[ch],
                                           ctx->deltoffst[ch], ctx->deltlen[ch],
                                           ctx->deltba[ch], ctx->mask[ch]);
    
            if(bit_alloc_stages[ch] > 0) {
                /* Compute bit allocation */
                ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
                                          ctx->startmant[ch], ctx->endmant[ch],
                                          ctx->snroffst[ch],
                                          ctx->bit_alloc_params.floor,
                                          ctx->bap[ch]);
    
        if (get_bits1(gb)) { /* unused dummy data */
    
            int skipl = get_bits(gb, 9);
    
        }
        /* unpack the transform coefficients
         * * this also uncouples channels if coupling is in use.
         */
        if (get_transform_coeffs(ctx)) {
            av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
            return -1;
        }
    
        /* recover coefficients if rematrixing is in use */
    
        if(ctx->acmod == AC3_ACMOD_STEREO)
    
        /* apply scaling to coefficients (headroom, dynrng) */
    
            float gain = 2.0f * ctx->mul_bias;
    
            if(ctx->acmod == AC3_ACMOD_DUALMONO && ch == 2) {
                gain *= ctx->dynrng2;
            } else {
                gain *= ctx->dynrng;
            }
    
                ctx->transform_coeffs[ch][i] *= gain;
            }
        }
    
        /* convert float to 16-bit integer */
        for(ch=0; ch<ctx->out_channels; ch++) {
            ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
        }
    
    /* Decode ac3 frame.
     *
     * @param avctx Pointer to AVCodecContext
     * @param data Pointer to pcm smaples
     * @param data_size Set to number of pcm samples produced by decoding
     * @param buf Data to be decoded
     * @param buf_size Size of the buffer
     */
    
    static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
    
        AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
        int16_t *out_samples = (int16_t *)data;
    
        //Initialize the GetBitContext with the start of valid AC3 Frame.
    
        init_get_bits(&ctx->gb, buf, buf_size * 8);
    
            av_log(avctx, AV_LOG_ERROR, "\n");
    
        avctx->sample_rate = ctx->sampling_rate;
        avctx->bit_rate = ctx->bit_rate;
    
            avctx->channels = ctx->out_channels;
    
        if(avctx->channels != ctx->out_channels) {
            av_log(avctx, AV_LOG_ERROR, "Cannot mix AC3 to %d channels.\n",
                   avctx->channels);
            return -1;
    
        //av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate);
    
        for (blk = 0; blk < NB_BLOCKS; blk++) {
            if (ac3_parse_audio_block(ctx, blk)) {
    
                av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
                *data_size = 0;