Skip to content
Snippets Groups Projects
ac3dec.c 61.4 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * This code is developed as part of Google Summer of Code 2006 Program.
     *
     * Acknowledgements:
     *
     * I would like to acknowledge my mentor Benjamin Larsson for his timely
     * help and excelleng guidance throughout the project.
     * Thanks a lot Benjamin.
     *
     * For exponent decoding the code is reused from liba52 by Michel Lespinasse
     * and Aaron Holtzman.
     * http://liba52.sourceforge.net
     *
     * Thanks Makoto Matsumoto and Takuji Nishimura for the Mersenne Twister.
     *
     * Kaiser-Bessel derived window by Justin Ruggles.
    
     *
     * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
    
     * Something is wrong up on cloud # 9!
    
     *
     * This library is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
     * This library is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with this library; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include <stdio.h>
    #include <stddef.h>
    #include <math.h>
    #include <string.h>
    
    #define ALT_BITSTREAM_READER
    
    #include "ac3_decoder.h"
    #include "bitstream.h"
    #include "dsputil.h"
    
    
    #define N 512   /* constant for IMDCT Block size */
    
    #define BLOCK_SIZE    256
    #define AUDIO_BLOCKS    6
    
    /* Exponent strategies. */
    #define AC3_EXPSTR_D15      0x01
    #define AC3_EXPSTR_D25      0x02
    #define AC3_EXPSTR_D45      0x03
    #define AC3_EXPSTR_REUSE    0x00
    
    
    /* Bit allocation strategies. */
    
    #define AC3_DBASTR_NEW      0x01
    #define AC3_DBASTR_NONE     0x02
    #define AC3_DBASTR_RESERVED 0x03
    #define AC3_DBASTR_REUSE    0x00
    
    
    /* Output and input configurations. */
    
    #define AC3_OUTPUT_UNMODIFIED   0x01
    #define AC3_OUTPUT_MONO         0x02
    #define AC3_OUTPUT_STEREO       0x04
    #define AC3_OUTPUT_DOLBY        0x08
    #define AC3_OUTPUT_LFEON        0x10
    
    
    #define AC3_INPUT_DUALMONO      0x00
    #define AC3_INPUT_MONO          0x01
    #define AC3_INPUT_STEREO        0x02
    #define AC3_INPUT_3F            0x03
    #define AC3_INPUT_2F_1R         0x04
    #define AC3_INPUT_3F_1R         0x05
    #define AC3_INPUT_2F_2R         0x06
    #define AC3_INPUT_3F_2R         0x07
    
    
    /* Mersenne Twister */
    #define NMT 624
    #define MMT 397
    
    #define MATRIX_A    0x9908b0df
    #define UPPER_MASK  0x80000000
    #define LOWER_MASK  0x7fffffff
    
    
    /* Mersenne Twister */
    
    typedef struct {
        uint32_t flags;
        uint16_t crc1;
        uint8_t  fscod;
    
        uint8_t  acmod;
        uint8_t  cmixlev;
        uint8_t  surmixlev;
        uint8_t  dsurmod;
    
        uint8_t  blksw;
        uint8_t  dithflag;
        uint8_t  cplinu;
        uint8_t  chincpl;
        uint8_t  phsflginu;
        uint8_t  cplbegf;
        uint8_t  cplendf;
        uint8_t  cplcoe;
        uint32_t cplbndstrc;
        uint8_t  rematstr;
        uint8_t  rematflg;
        uint8_t  cplexpstr;
        uint8_t  lfeexpstr;
        uint8_t  chexpstr[5];
        uint8_t  sdcycod;
        uint8_t  fdcycod;
        uint8_t  sgaincod;
        uint8_t  dbpbcod;
        uint8_t  floorcod;
        uint8_t  csnroffst;
        uint8_t  cplfsnroffst;
        uint8_t  cplfgaincod;
        uint8_t  fsnroffst[5];
        uint8_t  fgaincod[5];
        uint8_t  lfefsnroffst;
        uint8_t  lfefgaincod;
        uint8_t  cplfleak;
        uint8_t  cplsleak;
        uint8_t  cpldeltbae;
        uint8_t  deltbae[5];
        uint8_t  cpldeltnseg;
        uint8_t  cpldeltoffst[8];
        uint8_t  cpldeltlen[8];
        uint8_t  cpldeltba[8];
        uint8_t  deltnseg[5];
        uint8_t  deltoffst[5][8];
        uint8_t  deltlen[5][8];
        uint8_t  deltba[5][8];
    
        /* Derived Attributes. */
        int      sampling_rate;
        int      bit_rate;
        int      frame_size;
    
        int      nfchans;
        int      lfeon;
    
    
        float    chcoeffs[6];
        float    cplco[5][18];
        int      ncplbnd;
        int      ncplsubnd;
        int      cplstrtmant;
        int      cplendmant;
        int      endmant[5];
        uint8_t  dcplexps[256];
        uint8_t  dexps[5][256];
        uint8_t  dlfeexps[256];
        uint8_t  cplbap[256];
        uint8_t  bap[5][256];
        uint8_t  lfebap[256];
        int      blkoutput;
    
        DECLARE_ALIGNED_16(float, transform_coeffs[MAX_CHANNELS][BLOCK_SIZE]);
    
        /* For IMDCT. */
    
        MDCTContext imdct_512;  //N/8 point IFFT context
        MDCTContext imdct_256;  //N/4 point IFFT context
    
        DSPContext  dsp;        //for optimization
    
        DECLARE_ALIGNED_16(float, output[MAX_CHANNELS][BLOCK_SIZE]);
        DECLARE_ALIGNED_16(float, delay[MAX_CHANNELS][BLOCK_SIZE]);
        DECLARE_ALIGNED_16(float, tmp_imdct[BLOCK_SIZE]);
        DECLARE_ALIGNED_16(float, tmp_output[BLOCK_SIZE * 2]);
    
        DECLARE_ALIGNED_16(float, window[BLOCK_SIZE]);
    
    
        /* Miscellaneous. */
        GetBitContext gb;
        dither_state  dith_state;
    } AC3DecodeContext;
    
    
    /* BEGIN Mersenne Twister Code. */
    
    static void dither_seed(dither_state *state, uint32_t seed)
    {
    
        if (seed == 0) seed = 0x1f2e3d4c;
    
        for (state->mti = 1; state->mti < NMT; state->mti++)
    
            state->mt[state->mti] = ((69069 * state->mt[state->mti - 1]) + 1);
    }
    
    static uint32_t dither_uint32(dither_state *state)
    
        uint32_t y;
        static const uint32_t mag01[2] = { 0x00, MATRIX_A };
        int kk;
    
    
        if (state->mti >= NMT) {
            for (kk = 0; kk < NMT - MMT; kk++) {
    
                y = (state->mt[kk] & UPPER_MASK) | (state->mt[kk + 1] & LOWER_MASK);
    
                state->mt[kk] = state->mt[kk + MMT] ^ (y >> 1) ^ mag01[y & 0x01];
    
                y = (state->mt[kk] & UPPER_MASK) | (state->mt[kk + 1] & LOWER_MASK);
    
                state->mt[kk] = state->mt[kk + (MMT - NMT)] ^ (y >> 1) ^ mag01[y & 0x01];
    
            y = (state->mt[NMT - 1] & UPPER_MASK) | (state->mt[0] & LOWER_MASK);
            state->mt[NMT - 1] = state->mt[MMT - 1] ^ (y >> 1) ^ mag01[y & 0x01];
    
        y = state->mt[state->mti++];
        y ^= (y >> 11);
        y ^= ((y << 7) & 0x9d2c5680);
        y ^= ((y << 15) & 0xefc60000);
        y ^= (y >> 18);
    
        return y;
    }
    
    static inline int16_t dither_int16(dither_state *state)
    
        return ((dither_uint32(state) << 16) >> 16);
    }
    
    /**
     * Generate a Kaiser-Bessel Derived Window.
     */
    
    static void ac3_window_init(float *window)
    
       int i, j;
       double sum = 0.0, bessel, tmp;
       double local_window[256];
       double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
    
       for (i = 0; i < 256; i++) {
           tmp = i * (256 - i) * alpha2;
           bessel = 1.0;
           for (j = 100; j > 0; j--) /* defaul to 100 iterations */
               bessel = bessel * tmp / (j * j) + 1;
           sum += bessel;
           local_window[i] = sum;
       }
    
       sum++;
       for (i = 0; i < 256; i++)
           window[i] = sqrt(local_window[i] / sum);
    
    static void generate_quantizers_table(int16_t quantizers[], int level, int length)
    {
        int i;
    
        for (i = 0; i < length; i++)
            quantizers[i] = ((2 * i - level + 1) << 15) / level;
    }
    
    static void generate_quantizers_table_1(int16_t quantizers[], int level, int length1, int length2, int size)
    {
        int i, j;
        int16_t v;
    
        for (i = 0; i < length1; i++) {
            v = ((2 * i - level + 1) << 15) / level;
            for (j = 0; j < length2; j++)
                quantizers[i * length2 + j] = v;
        }
    
        for (i = length1 * length2; i < size; i++)
            quantizers[i] = 0;
    }
    
    static void generate_quantizers_table_2(int16_t quantizers[], int level, int length1, int length2, int size)
    {
        int i, j;
        int16_t v;
    
        for (i = 0; i < length1; i++) {
            v = ((2 * (i % level) - level + 1) << 15) / level;
            for (j = 0; j < length2; j++)
                quantizers[i * length2 + j] = v;
        }
    
        for (i = length1 * length2; i < size; i++)
            quantizers[i] = 0;
    
    }
    
    static void generate_quantizers_table_3(int16_t quantizers[], int level, int length1, int length2, int size)
    {
        int i, j;
    
        for (i = 0; i < length1; i++)
            for (j = 0; j < length2; j++)
                quantizers[i * length2 + j] = ((2 * (j % level) - level + 1) << 15) / level;
    
        for (i = length1 * length2; i < size; i++)
            quantizers[i] = 0;
    }
    
    static void ac3_tables_init(void)
    
    {
        int i, j, k, l, v;
        /* compute bndtab and masktab from bandsz */
        k = 0;
        l = 0;
        for(i=0;i<50;i++) {
            bndtab[i] = l;
            v = bndsz[i];
            for(j=0;j<v;j++) masktab[k++]=i;
            l += v;
        }
        masktab[253] = masktab[254] = masktab[255] = 0;
        bndtab[50] = 0;
    
    
        /* Exponent Decoding Tables */
        for (i = 0; i < 5; i++) {
            v = i - 2;
            for (j = 0; j < 25; j++)
                exp_1[i * 25 + j] = v;
        }
    
        for (i = 0; i < 25; i++) {
            v = (i % 5) - 2;
            for (j = 0; j < 5; j++)
                exp_2[i * 5 + j] = v;
        }
    
        for (i = 0; i < 25; i++) {
            v = -2;
            for (j = 0; j < 5; j++)
                exp_3[i * 5 + j] = v++;
        }
    
        for (i = 125; i < 128; i++)
            exp_1[i] = exp_2[i] = exp_3[i] = 25;
        /* End Exponent Decoding Tables */
    
        /* Quantizer ungrouping tables. */
        // for level-3 quantizers
        generate_quantizers_table_1(l3_quantizers_1, 3, 3, 9, 32);
        generate_quantizers_table_2(l3_quantizers_2, 3, 9, 3, 32);
        generate_quantizers_table_3(l3_quantizers_3, 3, 9, 3, 32);
    
        //for level-5 quantizers
        generate_quantizers_table_1(l5_quantizers_1, 5, 5, 25, 128);
        generate_quantizers_table_2(l5_quantizers_2, 5, 25, 5, 128);
        generate_quantizers_table_3(l5_quantizers_3, 5, 25, 5, 128);
    
        //for level-7 quantizers
        generate_quantizers_table(l7_quantizers, 7, 7);
    
        //for level-4 quantizers
        generate_quantizers_table_2(l11_quantizers_1, 11, 11, 11, 128);
        generate_quantizers_table_3(l11_quantizers_2, 11, 11, 11, 128);
    
        //for level-15 quantizers
        generate_quantizers_table(l15_quantizers, 15, 15);
    
    
    static int ac3_decode_init(AVCodecContext *avctx)
    {
        AC3DecodeContext *ctx = avctx->priv_data;
    
    
        ff_mdct_init(&ctx->imdct_256, 8, 1);
        ff_mdct_init(&ctx->imdct_512, 9, 1);
    
        /* Kaiser-Bessel derived window. */
        ac3_window_init(ctx->window);
    
        dsputil_init(&ctx->dsp, avctx);
    
        dither_seed(&ctx->dith_state, 0);
    
    static int ac3_synchronize(uint8_t *buf, int buf_size)
    
        for (i = 0; i < buf_size - 1; i++)
            if (buf[i] == 0x0b && buf[i + 1] == 0x77)
                return i;
    
    }
    
    //Returns -1 when 'fscod' is not valid;
    
    static int ac3_parse_sync_info(AC3DecodeContext *ctx)
    
        skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
        ctx->crc1 = get_bits(gb, 16);
        ctx->fscod = get_bits(gb, 2);
        if (ctx->fscod == 0x03)
    
        frmsizecod = get_bits(gb, 6);
        if (frmsizecod >= 38)
    
        ctx->sampling_rate = ac3_freqs[ctx->fscod];
        ctx->bit_rate = ac3_bitratetab[frmsizecod >> 1];
    
        /* we include it here in order to determine validity of ac3 frame */
    
        bsid = get_bits(gb, 5);
        if (bsid > 0x08)
    
        skip_bits(gb, 3); //skip the bsmod, bsi->bsmod = get_bits(gb, 3);
    
                ctx->frame_size = 4 * ctx->bit_rate;
                return ctx->frame_size;
    
                ctx->frame_size = 2 * (320 * ctx->bit_rate / 147 + (frmsizecod & 1));
                return ctx->frame_size;
    
                ctx->frame_size =  6 * ctx->bit_rate;
                return ctx->frame_size;
    
    static void ac3_parse_bsi(AC3DecodeContext *ctx)
    
        ctx->cmixlev = 0;
        ctx->surmixlev = 0;
        ctx->dsurmod = 0;
        ctx->nfchans = 0;
        ctx->cpldeltbae = AC3_DBASTR_NONE;
        ctx->cpldeltnseg = 0;
    
            ctx->deltbae[i] = AC3_DBASTR_NONE;
            ctx->deltnseg[i] = 0;
    
        ctx->dynrng = 1.0;
        ctx->dynrng2 = 1.0;
    
        ctx->acmod = get_bits(gb, 3);
        ctx->nfchans = nfchans_tbl[ctx->acmod];
    
        if (ctx->acmod & 0x01 && ctx->acmod != 0x01)
            ctx->cmixlev = get_bits(gb, 2);
        if (ctx->acmod & 0x04)
            ctx->surmixlev = get_bits(gb, 2);
        if (ctx->acmod == 0x02)
            ctx->dsurmod = get_bits(gb, 2);
    
        ctx->lfeon = get_bits1(gb);
    
        i = !(ctx->acmod);
        do {
            skip_bits(gb, 5); //skip dialog normalization
            if (get_bits1(gb))
                skip_bits(gb, 8); //skip compression
            if (get_bits1(gb))
                skip_bits(gb, 8); //skip language code
            if (get_bits1(gb))
                skip_bits(gb, 7); //skip audio production information
        } while (i--);
    
        skip_bits(gb, 2); //skip copyright bit and original bitstream bit
    
    
            skip_bits(gb, 14); //skip timecode1
    
            skip_bits(gb, 14); //skip timecode2
    
    
            i = get_bits(gb, 6); //additional bsi length
    
    /* Decodes the grouped exponents and stores them
    
     * in decoded exponents (dexps).
    
     * The code is derived from liba52.
     * Uses liba52 tables.
    
    static int decode_exponents(GetBitContext *gb, int expstr, int ngrps, uint8_t absexp, uint8_t *dexps)
    
            if (absexp > 24) {
                av_log(NULL, AV_LOG_ERROR, "Absolute Exponent > 24, ngrp = %d\n", ngrps);
                return -ngrps;
            }
    
            switch (expstr) {
                case AC3_EXPSTR_D45:
                    *(dexps++) = absexp;
                    *(dexps++) = absexp;
                case AC3_EXPSTR_D25:
                    *(dexps++) = absexp;
                case AC3_EXPSTR_D15:
                    *(dexps++) = absexp;
            }
    
            if (absexp > 24) {
                av_log(NULL, AV_LOG_ERROR, "Absolute Exponent > 24, ngrp = %d\n", ngrps);
                return -ngrps;
            }
    
            switch (expstr) {
                case AC3_EXPSTR_D45:
                    *(dexps++) = absexp;
                    *(dexps++) = absexp;
                case AC3_EXPSTR_D25:
                    *(dexps++) = absexp;
                case AC3_EXPSTR_D15:
                    *(dexps++) = absexp;
            }
    
            if (absexp > 24) {
                av_log(NULL, AV_LOG_ERROR, "Absolute Exponent > 24, ngrp = %d\n", ngrps);
                return -ngrps;
            }
    
            switch (expstr) {
                case AC3_EXPSTR_D45:
                    *(dexps++) = absexp;
                    *(dexps++) = absexp;
                case AC3_EXPSTR_D25:
                    *(dexps++) = absexp;
                case AC3_EXPSTR_D15:
                    *(dexps++) = absexp;
            }
    
    static inline int logadd(int a, int b)
    
        address = FFMIN((ABS(c) >> 1), 255);
    
        if (c >= 0)
            return (a + latab[address]);
        else
            return (b + latab[address]);
    
    static inline int calc_lowcomp(int a, int b0, int b1, int bin)
    
        if (bin < 7) {
            if ((b0 + 256) == b1)
                a = 384;
            else if (b0 > b1)
    
        }
        else if (bin < 20) {
            if ((b0 + 256) == b1)
                a = 320;
            else if (b0 > b1)
    
    }
    
    /* do the bit allocation for chnl.
     * chnl = 0 to 4 - fbw channel
     * chnl = 5 coupling channel
     * chnl = 6 lfe channel
     */
    
    static void do_bit_allocation(AC3DecodeContext *ctx, int chnl)
    
        int16_t psd[256], bndpsd[50], excite[50], mask[50], delta;
    
        int sdecay, fdecay, sgain, dbknee, floor;
    
        int lowcomp = 0, fgain = 0, snroffset = 0, fastleak = 0, slowleak = 0, do_delta = 0;
    
        int start = 0, end = 0, bin = 0, i = 0, j = 0, k = 0, lastbin = 0, bndstrt = 0;
        int bndend = 0, begin = 0, deltnseg = 0, band = 0, seg = 0, address = 0;
    
        uint8_t *deltoffst = 0, *deltlen = 0, *deltba = 0;
        uint8_t *exps = 0, *bap = 0;
    
        sdecay = sdecaytab[ctx->sdcycod];
        fdecay = fdecaytab[ctx->fdcycod];
        sgain = sgaintab[ctx->sgaincod];
        dbknee = dbkneetab[ctx->dbpbcod];
        floor = floortab[ctx->floorcod];
    
            start = ctx->cplstrtmant;
            end = ctx->cplendmant;
            fgain = fgaintab[ctx->cplfgaincod];
            snroffset = (((ctx->csnroffst - 15) << 4) + ctx->cplfsnroffst) << 2;
            fastleak = (ctx->cplfleak << 8) + 768;
            slowleak = (ctx->cplsleak << 8) + 768;
            exps = ctx->dcplexps;
    
            bap = ctx->cplbap;
            if (ctx->cpldeltbae == AC3_DBASTR_NEW || ctx->deltbae == AC3_DBASTR_REUSE) {
    
                deltnseg = ctx->cpldeltnseg;
                deltoffst = ctx->cpldeltoffst;
                deltlen = ctx->cpldeltlen;
                deltba = ctx->cpldeltba;
    
        else if (chnl == 6) {
            start = 0;
            end = 7;
            lowcomp = 0;
    
            fgain = fgaintab[ctx->lfefgaincod];
            snroffset = (((ctx->csnroffst - 15) << 4) + ctx->lfefsnroffst) << 2;
            exps = ctx->dlfeexps;
    
            fgain = fgaintab[ctx->fgaincod[chnl]];
            snroffset = (((ctx->csnroffst - 15) << 4) + ctx->fsnroffst[chnl]) << 2;
            exps = ctx->dexps[chnl];
    
            bap = ctx->bap[chnl];
            if (ctx->deltbae[chnl] == AC3_DBASTR_NEW || ctx->deltbae[chnl] == AC3_DBASTR_REUSE) {
    
                deltnseg = ctx->deltnseg[chnl];
                deltoffst = ctx->deltoffst[chnl];
                deltlen = ctx->deltlen[chnl];
                deltba = ctx->deltba[chnl];
    
            }
        }
    
        for (bin = start; bin < end; bin++) /* exponent mapping into psd */
    
            psd[bin] = (3072 - (exps[bin] << 7));
    
    
        /* psd integration */
        j = start;
        k = masktab[start];
        do {
    
            lastbin = FFMIN((bndtab[k] + bndsz[k]), end);
    
            bndpsd[k] = psd[j];
            j++;
            for (i = j; i < lastbin; i++) {
                bndpsd[k] = logadd(bndpsd[k], psd[j]);
                j++;
            }
            k++;
        } while (end > lastbin);
    
        /* compute the excite function */
        bndstrt = masktab[start];
        bndend = masktab[end - 1] + 1;
        if (bndstrt == 0) {
            lowcomp = calc_lowcomp(lowcomp, bndpsd[0], bndpsd[1], 0);
            excite[0] = bndpsd[0] - fgain - lowcomp;
            lowcomp = calc_lowcomp(lowcomp, bndpsd[1], bndpsd[2], 1);
            excite[1] = bndpsd[1] - fgain - lowcomp;
            begin = 7;
            for (bin = 2; bin < 7; bin++) {
    
                if ((bndend != 7) || (bin != 6))
    
                    lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin + 1], bin);
                fastleak = bndpsd[bin] - fgain;
                slowleak = bndpsd[bin] - sgain;
                excite[bin] = fastleak - lowcomp;
    
                if ((bndend != 7) || (bin != 6))
    
                    if (bndpsd[bin] <= bndpsd[bin + 1]) {
                        begin = bin + 1;
                        break;
                    }
            }
    
            for (bin = begin; bin < FFMIN(bndend, 22); bin++) {
    
                if ((bndend != 7) || (bin != 6))
    
                    lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin + 1], bin);
                fastleak -= fdecay;
    
                fastleak = FFMAX(fastleak, (bndpsd[bin] - fgain));
    
                slowleak = FFMAX(slowleak, (bndpsd[bin] - sgain));
                excite[bin] = FFMAX((fastleak - lowcomp), slowleak);
    
            }
            begin = 22;
        }
        else {
            begin = bndstrt;
        }
        for (bin = begin; bin < bndend; bin++) {
            fastleak -= fdecay;
    
            fastleak = FFMAX(fastleak, (bndpsd[bin] - fgain));
    
            slowleak = FFMAX(slowleak, (bndpsd[bin] - sgain));
    
            excite[bin] = FFMAX(fastleak, slowleak);
        }
    
        /* compute the masking curve */
        for (bin = bndstrt; bin < bndend; bin++) {
            if (bndpsd[bin] < dbknee)
                excite[bin] += ((dbknee - bndpsd[bin]) >> 2);
            mask[bin] = FFMAX(excite[bin], hth[bin][fscod]);
        }
    
        /* apply the delta bit allocation */
        if (do_delta) {
            band = 0;
            for (seg = 0; seg < deltnseg + 1; seg++) {
    
                band += deltoffst[seg];
                if (deltba[seg] >= 4)
                    delta = (deltba[seg] - 3) << 7;
    
                    delta = (deltba[seg] - 4) << 7;
                for (k = 0; k < deltlen[seg]; k++) {
    
                    mask[band] += delta;
                    band++;
                }
            }
        }
    
        /*compute the bit allocation */
        i = start;
        j = masktab[start];
        do {
    
            lastbin = FFMIN((bndtab[j] + bndsz[j]), end);
    
            mask[j] -= snroffset;
            mask[j] -= floor;
            if (mask[j] < 0)
                mask[j] = 0;
            mask[j] &= 0x1fe0;
            mask[j] += floor;
            for (k = i; k < lastbin; k++) {
                address = (psd[i] - mask[j]) >> 5;
    
                address = FFMIN(63, (FFMAX(0, address)));
                bap[i] = baptab[address];
    
    /* Check if snroffsets are zero. */
    static int is_snr_offsets_zero(AC3DecodeContext *ctx)
    
        if ((ctx->csnroffst) || (ctx->cplinu && ctx->cplfsnroffst) ||
    
                (ctx->lfeon && ctx->lfefsnroffst))
    
        for (i = 0; i < ctx->nfchans; i++)
    
    typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
    
        int16_t l3_quantizers[3];
        int16_t l5_quantizers[3];
        int16_t l11_quantizers[2];
    
        int l3ptr;
        int l5ptr;
        int l11ptr;
    } mant_groups;
    
    #define TRANSFORM_COEFF(tc, m, e, f) (tc) = (m) * (f)[(e)]
    
    /* Get the transform coefficients for coupling channel and uncouple channels.
     * The coupling transform coefficients starts at the the cplstrtmant, which is
     * equal to endmant[ch] for fbw channels. Hence we can uncouple channels before
     * getting transform coefficients for the channel.
     */
    static int get_transform_coeffs_cpling(AC3DecodeContext *ctx, mant_groups *m)
    
        int ch, start, end, cplbndstrc, bnd, gcode, tbap;
    
        uint8_t *exps = ctx->dcplexps;
        uint8_t *bap = ctx->cplbap;
    
        cplbndstrc = ctx->cplbndstrc;
        start = ctx->cplstrtmant;
        bnd = 0;
    
        while (start < ctx->cplendmant) {
            end = start + 12;
            while (cplbndstrc & 1) {
                end += 12;
                cplbndstrc >>= 1;
            }
            cplbndstrc >>= 1;
            for (ch = 0; ch < ctx->nfchans; ch++)
                cplcos[ch] = ctx->chcoeffs[ch] * ctx->cplco[ch][bnd];
            bnd++;
    
            while (start < end) {
                tbap = bap[start];
                switch(tbap) {
    
                        for (ch = 0; ch < ctx->nfchans; ch++)
    
                            if (((ctx->chincpl) >> ch) & 1) {
    
                                if ((ctx->dithflag >> ch) & 1) {
    
                                    TRANSFORM_COEFF(cplcoeff, dither_int16(&ctx->dith_state), exps[start], scale_factors);
    
                                    ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch] * LEVEL_MINUS_3DB;
    
                                    ctx->transform_coeffs[ch + 1][start] = 0;
    
                        continue;
                    case 1:
                        if (m->l3ptr > 2) {
                            gcode = get_bits(gb, 5);
    
                            m->l3_quantizers[0] = l3_quantizers_1[gcode];
                            m->l3_quantizers[1] = l3_quantizers_2[gcode];
                            m->l3_quantizers[2] = l3_quantizers_3[gcode];
    
                        TRANSFORM_COEFF(cplcoeff, m->l3_quantizers[m->l3ptr++], exps[start], scale_factors);
    
                        break;
    
                    case 2:
                        if (m->l5ptr > 2) {
                            gcode = get_bits(gb, 7);
    
                            m->l5_quantizers[0] = l5_quantizers_1[gcode];
                            m->l5_quantizers[1] = l5_quantizers_2[gcode];
                            m->l5_quantizers[2] = l5_quantizers_3[gcode];
    
                        TRANSFORM_COEFF(cplcoeff, m->l5_quantizers[m->l5ptr++], exps[start], scale_factors);
    
                        TRANSFORM_COEFF(cplcoeff, l7_quantizers[get_bits(gb, 3)], exps[start], scale_factors);
    
                        break;
    
                    case 4:
                        if (m->l11ptr > 1) {
                            gcode = get_bits(gb, 7);
    
                            m->l11_quantizers[0] = l11_quantizers_1[gcode];
                            m->l11_quantizers[1] = l11_quantizers_2[gcode];
    
                        TRANSFORM_COEFF(cplcoeff, m->l11_quantizers[m->l11ptr++], exps[start], scale_factors);
    
                        TRANSFORM_COEFF(cplcoeff, l15_quantizers[get_bits(gb, 4)], exps[start], scale_factors);
    
                        TRANSFORM_COEFF(cplcoeff, get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap]),
    
                for (ch = 0; ch < ctx->nfchans; ch++)
                    if ((ctx->chincpl >> ch) & 1)
    
                        ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch];
    
    
    /* Get the transform coefficients for particular channel */
    
    static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
    
        GetBitContext *gb = &ctx->gb;
        int i, gcode, tbap, dithflag, end;
        uint8_t *exps;
        uint8_t *bap;
        float *coeffs;
    
            factors[i] = scale_factors[i] * ctx->chcoeffs[ch_index];
    
        if (ch_index != -1) { /* fbw channels */
            dithflag = (ctx->dithflag >> ch_index) & 1;
            exps = ctx->dexps[ch_index];
            bap = ctx->bap[ch_index];
            coeffs = ctx->transform_coeffs[ch_index + 1];
            end = ctx->endmant[ch_index];
        } else if (ch_index == -1) {
            dithflag = 0;
            exps = ctx->dlfeexps;
            bap = ctx->lfebap;
            coeffs = ctx->transform_coeffs[0];
            end = 7;
        }
    
                        TRANSFORM_COEFF(coeffs[i], dither_int16(&ctx->dith_state), exps[i], factors);
    
                        m->l3_quantizers[0] = l3_quantizers_1[gcode];
                        m->l3_quantizers[1] = l3_quantizers_2[gcode];
                        m->l3_quantizers[2] = l3_quantizers_3[gcode];
    
                    TRANSFORM_COEFF(coeffs[i], m->l3_quantizers[m->l3ptr++], exps[i], factors);
    
                        m->l5_quantizers[0] = l5_quantizers_1[gcode];
                        m->l5_quantizers[1] = l5_quantizers_2[gcode];
                        m->l5_quantizers[2] = l5_quantizers_3[gcode];
    
                    TRANSFORM_COEFF(coeffs[i], m->l5_quantizers[m->l5ptr++], exps[i], factors);
    
                    TRANSFORM_COEFF(coeffs[i], l7_quantizers[get_bits(gb, 3)], exps[i], factors);
    
                        m->l11_quantizers[0] = l11_quantizers_1[gcode];
                        m->l11_quantizers[1] = l11_quantizers_2[gcode];
    
                    TRANSFORM_COEFF(coeffs[i], m->l11_quantizers[m->l11ptr++], exps[i], factors);
    
                    TRANSFORM_COEFF(coeffs[i], l15_quantizers[get_bits(gb, 4)], exps[i], factors);
    
                    TRANSFORM_COEFF(coeffs[i], get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap]), exps[i], factors);
    
            }
        }
    
        return 0;
    }
    
    static int get_transform_coeffs(AC3DecodeContext * ctx)
    {
    
        mant_groups m;
    
        m.l3ptr = m.l5ptr = m.l11ptr = 3;
    
        for (i = 0; i < ctx->nfchans; i++) {
    
            /* transform coefficients for individual channel */
    
            if (get_transform_coeffs_ch(ctx, i, &m))
    
                return -1;
            /* tranform coefficients for coupling channels */
    
            if ((ctx->chincpl >> i) & 1)  {
    
                    if (get_transform_coeffs_cpling(ctx, &m)) {
                        av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
    
                ctx->transform_coeffs[i + 1][end] = 0;