Skip to content
Snippets Groups Projects
ac3dec.c 36.3 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * This code is developed as part of Google Summer of Code 2006 Program.
     *
    
     * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
    
     * http://liba52.sourceforge.net
    
     * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
     * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
    
     * This file is part of FFmpeg.
    
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU General Public
    
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
    
     * FFmpeg is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    
     * General Public License for more details.
    
     * You should have received a copy of the GNU General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include <stdio.h>
    #include <stddef.h>
    #include <math.h>
    #include <string.h>
    
    
    #include "bitstream.h"
    #include "dsputil.h"
    
    #include "random.h"
    
    /**
     * Table of bin locations for rematrixing bands
     * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
     */
    static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
    
    
    /* table for exponent to scale_factor mapping
     * scale_factor[i] = 2 ^ -(i + 15)
     */
    static float scale_factors[25];
    
    
    /** table for grouping exponents */
    static uint8_t exp_ungroup_tbl[128][3];
    
    
    static int16_t l3_quantizers_1[32];
    static int16_t l3_quantizers_2[32];
    static int16_t l3_quantizers_3[32];
    
    static int16_t l5_quantizers_1[128];
    static int16_t l5_quantizers_2[128];
    static int16_t l5_quantizers_3[128];
    
    static int16_t l7_quantizers[7];
    
    static int16_t l11_quantizers_1[128];
    static int16_t l11_quantizers_2[128];
    
    static int16_t l15_quantizers[15];
    
    static const uint8_t qntztab[16] = { 0, 5, 7, 3, 7, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16 };
    
    /* Adjustmens in dB gain */
    #define LEVEL_MINUS_3DB         0.7071067811865476
    #define LEVEL_MINUS_4POINT5DB   0.5946035575013605
    #define LEVEL_MINUS_6DB         0.5000000000000000
    #define LEVEL_PLUS_3DB          1.4142135623730951
    #define LEVEL_PLUS_6DB          2.0000000000000000
    #define LEVEL_ZERO              0.0000000000000000
    
    static const float clevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB,
        LEVEL_MINUS_6DB, LEVEL_MINUS_4POINT5DB };
    
    static const float slevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO, LEVEL_MINUS_6DB };
    
    
        int acmod;
        int cmixlev;
        int surmixlev;
        int dsurmod;
    
        int blksw[AC3_MAX_CHANNELS];
        int dithflag[AC3_MAX_CHANNELS];
    
        int cplinu;
        int chincpl[AC3_MAX_CHANNELS];
        int phsflginu;
        int cplcoe;
    
        int nrematbnd;
    
        int rematflg[AC3_MAX_CHANNELS];
        int cplexpstr;
        int lfeexpstr;
        int chexpstr[5];
    
        int cplsnroffst;
        int cplfgain;
        int snroffst[5];
        int fgain[5];
        int lfesnroffst;
        int lfefgain;
    
        int cpldeltbae;
        int deltbae[5];
        int cpldeltnseg;
    
        uint8_t  cpldeltoffst[8];
        uint8_t  cpldeltlen[8];
        uint8_t  cpldeltba[8];
    
        int deltnseg[5];
    
        uint8_t  deltoffst[5][8];
        uint8_t  deltlen[5][8];
        uint8_t  deltba[5][8];
    
        /* Derived Attributes. */
        int      sampling_rate;
        int      bit_rate;
        int      frame_size;
    
    
        int      nchans;            //number of total channels
        int      nfchans;           //number of full-bandwidth channels
    
        int      lfeon;             //lfe channel in use
    
        int      output_mode;       ///< output channel configuration
        int      out_channels;      ///< number of output channels
    
    
        float    dynrng;            //dynamic range gain
        float    dynrng2;           //dynamic range gain for 1+1 mode
        float    cplco[5][18];      //coupling coordinates
        int      ncplbnd;           //number of coupling bands
        int      ncplsubnd;         //number of coupling sub bands
        int      cplstrtmant;       //coupling start mantissa
        int      cplendmant;        //coupling end mantissa
        int      endmant[5];        //channel end mantissas
    
        AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
    
        int8_t   dcplexps[256];     //decoded coupling exponents
        int8_t   dexps[5][256];     //decoded fbw channel exponents
        int8_t   dlfeexps[256];     //decoded lfe channel exponents
    
        uint8_t  cplbap[256];       //coupling bit allocation pointers
        uint8_t  bap[5][256];       //fbw channel bit allocation pointers
        uint8_t  lfebap[256];       //lfe channel bit allocation pointers
    
    
        DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]);  //transform coefficients
    
        MDCTContext imdct_512;  //for 512 sample imdct transform
        MDCTContext imdct_256;  //for 256 sample imdct transform
    
        DSPContext  dsp;        //for optimization
    
        DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS][256]);   //output after imdct transform and windowing
        DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS][256]);    //delay - added to the next block
        DECLARE_ALIGNED_16(float, tmp_imdct[256]);                  //temporary storage for imdct transform
        DECLARE_ALIGNED_16(float, tmp_output[512]);                 //temporary storage for output before windowing
        DECLARE_ALIGNED_16(float, window[256]);                     //window coefficients
    
        AVRandomState dith_state;   //for dither generation
    
    /*********** BEGIN INIT HELPER FUNCTIONS ***********/
    
    /**
     * Generate a Kaiser-Bessel Derived Window.
     */
    
    static void ac3_window_init(float *window)
    
       int i, j;
       double sum = 0.0, bessel, tmp;
       double local_window[256];
       double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
    
       for (i = 0; i < 256; i++) {
           tmp = i * (256 - i) * alpha2;
           bessel = 1.0;
           for (j = 100; j > 0; j--) /* defaul to 100 iterations */
               bessel = bessel * tmp / (j * j) + 1;
           sum += bessel;
           local_window[i] = sum;
       }
    
       sum++;
       for (i = 0; i < 256; i++)
           window[i] = sqrt(local_window[i] / sum);
    
    static void generate_quantizers_table(int16_t quantizers[], int level, int length)
    {
        int i;
    
        for (i = 0; i < length; i++)
            quantizers[i] = ((2 * i - level + 1) << 15) / level;
    }
    
    static void generate_quantizers_table_1(int16_t quantizers[], int level, int length1, int length2, int size)
    {
        int i, j;
        int16_t v;
    
        for (i = 0; i < length1; i++) {
            v = ((2 * i - level + 1) << 15) / level;
            for (j = 0; j < length2; j++)
                quantizers[i * length2 + j] = v;
        }
    
        for (i = length1 * length2; i < size; i++)
            quantizers[i] = 0;
    }
    
    static void generate_quantizers_table_2(int16_t quantizers[], int level, int length1, int length2, int size)
    {
        int i, j;
        int16_t v;
    
        for (i = 0; i < length1; i++) {
            v = ((2 * (i % level) - level + 1) << 15) / level;
            for (j = 0; j < length2; j++)
                quantizers[i * length2 + j] = v;
        }
    
        for (i = length1 * length2; i < size; i++)
            quantizers[i] = 0;
    
    }
    
    static void generate_quantizers_table_3(int16_t quantizers[], int level, int length1, int length2, int size)
    {
        int i, j;
    
        for (i = 0; i < length1; i++)
            for (j = 0; j < length2; j++)
                quantizers[i * length2 + j] = ((2 * (j % level) - level + 1) << 15) / level;
    
        for (i = length1 * length2; i < size; i++)
            quantizers[i] = 0;
    }
    
    
    static void ac3_tables_init(void)
    
    
        /* Quantizer ungrouping tables. */
        // for level-3 quantizers
        generate_quantizers_table_1(l3_quantizers_1, 3, 3, 9, 32);
        generate_quantizers_table_2(l3_quantizers_2, 3, 9, 3, 32);
        generate_quantizers_table_3(l3_quantizers_3, 3, 9, 3, 32);
    
        //for level-5 quantizers
        generate_quantizers_table_1(l5_quantizers_1, 5, 5, 25, 128);
        generate_quantizers_table_2(l5_quantizers_2, 5, 25, 5, 128);
        generate_quantizers_table_3(l5_quantizers_3, 5, 25, 5, 128);
    
        //for level-7 quantizers
        generate_quantizers_table(l7_quantizers, 7, 7);
    
        //for level-4 quantizers
        generate_quantizers_table_2(l11_quantizers_1, 11, 11, 11, 128);
        generate_quantizers_table_3(l11_quantizers_2, 11, 11, 11, 128);
    
        //for level-15 quantizers
        generate_quantizers_table(l15_quantizers, 15, 15);
    
        /* End Quantizer ungrouping tables. */
    
        //generate scale factors
        for (i = 0; i < 25; i++)
            scale_factors[i] = pow(2.0, -(i + 15));
    
    
        /* generate exponent tables
           reference: Section 7.1.3 Exponent Decoding */
        for(i=0; i<128; i++) {
            exp_ungroup_tbl[i][0] =  i / 25;
            exp_ungroup_tbl[i][1] = (i % 25) / 5;
            exp_ungroup_tbl[i][2] = (i % 25) % 5;
        }
    
    
    static int ac3_decode_init(AVCodecContext *avctx)
    {
        AC3DecodeContext *ctx = avctx->priv_data;
    
    
        ff_mdct_init(&ctx->imdct_256, 8, 1);
        ff_mdct_init(&ctx->imdct_512, 9, 1);
    
        dsputil_init(&ctx->dsp, avctx);
    
        av_init_random(0, &ctx->dith_state);
    
    /*********** END INIT FUNCTIONS ***********/
    
    /**
     * Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
    
     * GetBitContext within AC3DecodeContext must point to
     * start of the synchronized ac3 bitstream.
     */
    
    static int ac3_parse_header(AC3DecodeContext *ctx)
    
        int err, i;
    
        err = ff_ac3_parse_header(gb->buffer, &hdr);
        if(err)
            return err;
    
        /* get decoding parameters from header info */
        ctx->bit_alloc_params.fscod       = hdr.fscod;
        ctx->acmod                        = hdr.acmod;
        ctx->cmixlev                      = hdr.cmixlev;
        ctx->surmixlev                    = hdr.surmixlev;
        ctx->dsurmod                      = hdr.dsurmod;
        ctx->lfeon                        = hdr.lfeon;
        ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
        ctx->sampling_rate                = hdr.sample_rate;
        ctx->bit_rate                     = hdr.bit_rate;
        ctx->nchans                       = hdr.channels;
        ctx->nfchans                      = ctx->nchans - ctx->lfeon;
        ctx->frame_size                   = hdr.frame_size;
    
    
        /* set default output to all source channels */
        ctx->out_channels = ctx->nchans;
        ctx->output_mode = ctx->acmod;
    
            ctx->output_mode |= AC3_OUTPUT_LFEON;
    
    
        /* skip over portion of header which has already been read */
    
        skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
    
        skip_bits(gb, 16); // skip crc1
        skip_bits(gb, 8);  // skip fscod and frmsizecod
        skip_bits(gb, 11); // skip bsid, bsmod, and acmod
        if(ctx->acmod == AC3_ACMOD_STEREO) {
            skip_bits(gb, 2); // skip dsurmod
        } else {
            if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
                skip_bits(gb, 2); // skip cmixlev
            if(ctx->acmod & 4)
                skip_bits(gb, 2); // skip surmixlev
    
        /* read the rest of the bsi. read twice for dual mono mode. */
    
        i = !(ctx->acmod);
        do {
            skip_bits(gb, 5); //skip dialog normalization
            if (get_bits1(gb))
                skip_bits(gb, 8); //skip compression
            if (get_bits1(gb))
                skip_bits(gb, 8); //skip language code
            if (get_bits1(gb))
                skip_bits(gb, 7); //skip audio production information
        } while (i--);
    
        skip_bits(gb, 2); //skip copyright bit and original bitstream bit
    
    
        /* FIXME: read & use the xbsi1 downmix levels */
    
            skip_bits(gb, 14); //skip timecode1
    
            skip_bits(gb, 14); //skip timecode2
    
    
            i = get_bits(gb, 6); //additional bsi length
    
    /**
     * Decodes the grouped exponents.
    
     * This function decodes the coded exponents according to exponent strategy
     * and stores them in the decoded exponents buffer.
     *
    
     * @param[in]  gb      GetBitContext which points to start of coded exponents
     * @param[in]  expstr  Exponent coding strategy
     * @param[in]  ngrps   Number of grouped exponents
     * @param[in]  absexp  Absolute exponent or DC exponent
     * @param[out] dexps   Decoded exponents are stored in dexps
    
    static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
    
        int i, j, grp, grpsize;
        int dexp[256];
        int expacc, prevexp;
    
        /* unpack groups */
        grpsize = expstr + (expstr == EXP_D45);
        for(grp=0,i=0; grp<ngrps; grp++) {
            expacc = get_bits(gb, 7);
            dexp[i++] = exp_ungroup_tbl[expacc][0];
            dexp[i++] = exp_ungroup_tbl[expacc][1];
            dexp[i++] = exp_ungroup_tbl[expacc][2];
        }
    
        /* convert to absolute exps and expand groups */
        prevexp = absexp;
        for(i=0; i<ngrps*3; i++) {
            prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
            for(j=0; j<grpsize; j++) {
                dexps[(i*grpsize)+j] = prevexp;
    
    /**
     * Generates transform coefficients for each coupled channel in the coupling
     * range using the coupling coefficients and coupling coordinates.
     * reference: Section 7.4.3 Coupling Coordinate Format
     */
    static void uncouple_channels(AC3DecodeContext *ctx)
    {
        int i, j, ch, bnd, subbnd;
    
        subbnd = -1;
        i = ctx->cplstrtmant;
        for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
            do {
                subbnd++;
                for(j=0; j<12; j++) {
                    for(ch=1; ch<=ctx->nfchans; ch++) {
                        if(ctx->chincpl[ch-1])
                            ctx->transform_coeffs[ch][i] = ctx->transform_coeffs_cpl[i] * ctx->cplco[ch-1][bnd];
                    }
                    i++;
                }
            } while((ctx->cplbndstrc >> subbnd) & 1);
        }
    }
    
    
    typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
    
        int16_t l3_quantizers[3];
        int16_t l5_quantizers[3];
        int16_t l11_quantizers[2];
    
        int l3ptr;
        int l5ptr;
        int l11ptr;
    } mant_groups;
    
    
    /* Get the transform coefficients for particular channel */
    
    static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
    
        uint8_t *exps;
        uint8_t *bap;
        float *coeffs;
    
    
            exps = ctx->dexps[ch_index];
            bap = ctx->bap[ch_index];
            coeffs = ctx->transform_coeffs[ch_index + 1];
    
            end = ctx->endmant[ch_index];
        } else if (ch_index == -1) {
            exps = ctx->dlfeexps;
            bap = ctx->lfebap;
            coeffs = ctx->transform_coeffs[0];
    
        } else {
            exps = ctx->dcplexps;
            bap = ctx->cplbap;
            coeffs = ctx->transform_coeffs_cpl;
            start = ctx->cplstrtmant;
            end = ctx->cplendmant;
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                    coeffs[i] = (av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB;
    
                        m->l3_quantizers[0] = l3_quantizers_1[gcode];
                        m->l3_quantizers[1] = l3_quantizers_2[gcode];
                        m->l3_quantizers[2] = l3_quantizers_3[gcode];
    
                    coeffs[i] = m->l3_quantizers[m->l3ptr++];
                    break;
    
                        m->l5_quantizers[0] = l5_quantizers_1[gcode];
                        m->l5_quantizers[1] = l5_quantizers_2[gcode];
                        m->l5_quantizers[2] = l5_quantizers_3[gcode];
    
                    coeffs[i] = m->l5_quantizers[m->l5ptr++];
                    break;
    
                    coeffs[i] = l7_quantizers[get_bits(gb, 3)];
                    break;
    
                        m->l11_quantizers[0] = l11_quantizers_1[gcode];
                        m->l11_quantizers[1] = l11_quantizers_2[gcode];
    
                    coeffs[i] = m->l11_quantizers[m->l11ptr++];
                    break;
    
                    coeffs[i] = l15_quantizers[get_bits(gb, 4)];
                    break;
    
                    coeffs[i] = get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap]);
                    break;
    
            coeffs[i] *= scale_factors[exps[i]];
    
    /**
     * Removes random dithering from coefficients with zero-bit mantissas
     * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
     */
    static void remove_dithering(AC3DecodeContext *ctx) {
        int ch, i;
        int end=0;
        float *coeffs;
        uint8_t *bap;
    
        for(ch=1; ch<=ctx->nfchans; ch++) {
            if(!ctx->dithflag[ch-1]) {
                coeffs = ctx->transform_coeffs[ch];
                bap = ctx->bap[ch-1];
                if(ctx->chincpl[ch-1])
                    end = ctx->cplstrtmant;
                else
                    end = ctx->endmant[ch-1];
                for(i=0; i<end; i++) {
                    if(bap[i] == 0)
                        coeffs[i] = 0.0f;
                }
                if(ctx->chincpl[ch-1]) {
                    bap = ctx->cplbap;
                    for(; i<ctx->cplendmant; i++) {
                        if(bap[i] == 0)
                            coeffs[i] = 0.0f;
                    }
                }
            }
        }
    }
    
    
    /* Get the transform coefficients.
     * This function extracts the tranform coefficients form the ac3 bitstream.
     * This function is called after bit allocation is performed.
     */
    
    static int get_transform_coeffs(AC3DecodeContext * ctx)
    {
    
        mant_groups m;
    
        m.l3ptr = m.l5ptr = m.l11ptr = 3;
    
        for (i = 0; i < ctx->nfchans; i++) {
    
            /* transform coefficients for individual channel */
    
            if (get_transform_coeffs_ch(ctx, i, &m))
    
                return -1;
            /* tranform coefficients for coupling channels */
    
            if (ctx->chincpl[i])  {
    
                    if (get_transform_coeffs_ch(ctx, -2, &m)) {
    
                        av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
    
                ctx->transform_coeffs[i + 1][end] = 0;
    
            if (get_transform_coeffs_ch(ctx, -1, &m))
    
                ctx->transform_coeffs[0][i] = 0;
    
        /* if any channel doesn't use dithering, zero appropriate coefficients */
        if(!ctx->dither_all)
            remove_dithering(ctx);
    
    
    /**
     * Performs stereo rematrixing.
     * reference: Section 7.5.4 Rematrixing : Decoding Technique
     */
    
    static void do_rematrixing(AC3DecodeContext *ctx)
    {
    
        int bnd, i;
    
        float tmp0, tmp1;
    
    
        end = FFMIN(ctx->endmant[0], ctx->endmant[1]);
    
        for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
            if(ctx->rematflg[bnd]) {
                bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
                for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
                    tmp0 = ctx->transform_coeffs[1][i];
                    tmp1 = ctx->transform_coeffs[2][i];
                    ctx->transform_coeffs[1][i] = tmp0 + tmp1;
                    ctx->transform_coeffs[2][i] = tmp0 - tmp1;
                }
            }
    
    /* This function performs the imdct on 256 sample transform
     * coefficients.
     */
    
    static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        int i, k;
    
        DECLARE_ALIGNED_16(float, x[128]);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        FFTComplex z[2][64];
        float *o_ptr = ctx->tmp_output;
    
        for(i=0; i<2; i++) {
            /* de-interleave coefficients */
            for(k=0; k<128; k++) {
                x[k] = ctx->transform_coeffs[chindex][2*k+i];
            }
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            /* run standard IMDCT */
            ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
    
            /* reverse the post-rotation & reordering from standard IMDCT */
            for(k=0; k<32; k++) {
                z[i][32+k].re = -o_ptr[128+2*k];
                z[i][32+k].im = -o_ptr[2*k];
                z[i][31-k].re =  o_ptr[2*k+1];
                z[i][31-k].im =  o_ptr[128+2*k+1];
            }
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        /* apply AC-3 post-rotation & reordering */
        for(k=0; k<64; k++) {
            o_ptr[    2*k  ] = -z[0][   k].im;
            o_ptr[    2*k+1] =  z[0][63-k].re;
            o_ptr[128+2*k  ] = -z[0][   k].re;
            o_ptr[128+2*k+1] =  z[0][63-k].im;
            o_ptr[256+2*k  ] = -z[1][   k].re;
            o_ptr[256+2*k+1] =  z[1][63-k].im;
            o_ptr[384+2*k  ] =  z[1][   k].im;
            o_ptr[384+2*k+1] = -z[1][63-k].re;
        }
    
    static inline void do_imdct(AC3DecodeContext *ctx)
    {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        int ch;
    
        if (ctx->output_mode & AC3_OUTPUT_LFEON) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
                                          ctx->transform_coeffs[0], ctx->tmp_imdct);
    
            ctx->dsp.vector_fmul_add_add(ctx->output[0], ctx->tmp_output,
                                         ctx->window, ctx->delay[0], 384, 256, 1);
            ctx->dsp.vector_fmul_reverse(ctx->delay[0], ctx->tmp_output+256,
                                         ctx->window, 256);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        for (ch=1; ch<=ctx->nfchans; ch++) {
    
            if (ctx->blksw[ch-1])
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                do_imdct_256(ctx, ch);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
                                              ctx->transform_coeffs[ch],
                                              ctx->tmp_imdct);
    
            ctx->dsp.vector_fmul_add_add(ctx->output[ch], ctx->tmp_output,
                                         ctx->window, ctx->delay[ch], 384, 256, 1);
            ctx->dsp.vector_fmul_reverse(ctx->delay[ch], ctx->tmp_output+256,
                                         ctx->window, 256);
    
    /* Parse the audio block from ac3 bitstream.
     * This function extract the audio block from the ac3 bitstream
     * and produces the output for the block. This function must
     * be called for each of the six audio block in the ac3 bitstream.
     */
    
    static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
    
        int nfchans = ctx->nfchans;
        int acmod = ctx->acmod;
    
        int i, bnd, seg, grpsize, ch;
    
        GetBitContext *gb = &ctx->gb;
        int bit_alloc_flags = 0;
    
        int mstrcplco, cplcoexp, cplcomant;
    
        int dynrng, chbwcod, ngrps, cplabsexp, skipl;
    
    
        for (i = 0; i < nfchans; i++) /*block switch flag */
    
            ctx->blksw[i] = get_bits1(gb);
    
        ctx->dither_all = 1;
        for (i = 0; i < nfchans; i++) { /* dithering flag */
    
            ctx->dithflag[i] = get_bits1(gb);
    
        if (get_bits1(gb)) { /* dynamic range */
    
            ctx->dynrng = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]);
    
        if(acmod == AC3_ACMOD_DUALMONO) { /* dynamic range 1+1 mode */
            if(get_bits1(gb)) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                dynrng = get_sbits(gb, 8);
                ctx->dynrng2 = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]);
    
        if (get_bits1(gb)) { /* coupling strategy */
    
            if (ctx->cplinu) { /* coupling in use */
    
                    ctx->chincpl[i] = get_bits1(gb);
    
                if (acmod == AC3_ACMOD_STEREO)
    
                    ctx->phsflginu = get_bits1(gb); //phase flag in use
    
    
                cplbegf = get_bits(gb, 4);
                cplendf = get_bits(gb, 4);
    
                if (3 + cplendf - cplbegf < 0) {
                    av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
    
                ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
                ctx->cplstrtmant = cplbegf * 12 + 37;
                ctx->cplendmant = cplendf * 12 + 73;
    
                for (i = 0; i < ctx->ncplsubnd - 1; i++) /* coupling band structure */
    
                        ctx->cplbndstrc |= 1 << i;
                        ctx->ncplbnd--;
    
            } else {
                for (i = 0; i < nfchans; i++)
                    ctx->chincpl[i] = 0;
    
                if (ctx->chincpl[i])
    
                    if (get_bits1(gb)) { /* coupling co-ordinates */
    
                        mstrcplco = 3 * get_bits(gb, 2);
    
                        for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
    
                            cplcoexp = get_bits(gb, 4);
                            cplcomant = get_bits(gb, 4);
                            if (cplcoexp == 15)
                                cplcomant <<= 14;
                            else
                                cplcomant = (cplcomant | 0x10) << 13;
    
                            ctx->cplco[i][bnd] = cplcomant * scale_factors[cplcoexp + mstrcplco];
    
            if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && (ctx->cplcoe & 1 || ctx->cplcoe & 2))
    
                for (bnd = 0; bnd < ctx->ncplbnd; bnd++)
                    if (get_bits1(gb))
                        ctx->cplco[1][bnd] = -ctx->cplco[1][bnd];
    
        if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
    
            ctx->rematstr = get_bits1(gb);
            if (ctx->rematstr) {
    
                ctx->nrematbnd = 4;
                if(ctx->cplinu && ctx->cplstrtmant <= 61)
                    ctx->nrematbnd -= 1 + (ctx->cplstrtmant == 37);
                for(bnd=0; bnd<ctx->nrematbnd; bnd++)
                    ctx->rematflg[bnd] = get_bits1(gb);
    
        ctx->cplexpstr = EXP_REUSE;
        ctx->lfeexpstr = EXP_REUSE;
    
        if (ctx->cplinu) /* coupling exponent strategy */
            ctx->cplexpstr = get_bits(gb, 2);
        for (i = 0; i < nfchans; i++)  /* channel exponent strategy */
            ctx->chexpstr[i] = get_bits(gb, 2);
        if (ctx->lfeon)  /* lfe exponent strategy */
            ctx->lfeexpstr = get_bits1(gb);
    
    
        for (i = 0; i < nfchans; i++) /* channel bandwidth code */
    
            if (ctx->chexpstr[i] != EXP_REUSE) {
    
                if (ctx->chincpl[i])
    
                    ctx->endmant[i] = ctx->cplstrtmant;
    
                    chbwcod = get_bits(gb, 6);
                    if (chbwcod > 60) {
                        av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
    
                    ctx->endmant[i] = chbwcod * 3 + 73;
    
        if (ctx->cplexpstr != EXP_REUSE) {/* coupling exponents */
    
            cplabsexp = get_bits(gb, 4) << 1;
            ngrps = (ctx->cplendmant - ctx->cplstrtmant) / (3 << (ctx->cplexpstr - 1));
    
            decode_exponents(gb, ctx->cplexpstr, ngrps, cplabsexp, ctx->dcplexps + ctx->cplstrtmant);
    
        for (i = 0; i < nfchans; i++) /* fbw channel exponents */
    
            if (ctx->chexpstr[i] != EXP_REUSE) {
    
                grpsize = 3 << (ctx->chexpstr[i] - 1);
                ngrps = (ctx->endmant[i] + grpsize - 4) / grpsize;
                dexps = ctx->dexps[i];
    
                decode_exponents(gb, ctx->chexpstr[i], ngrps, dexps[0], dexps + 1);
    
                skip_bits(gb, 2); /* skip gainrng */
    
        if (ctx->lfeexpstr != EXP_REUSE) { /* lfe exponents */
    
            ctx->dlfeexps[0] = get_bits(gb, 4);
    
            decode_exponents(gb, ctx->lfeexpstr, 2, ctx->dlfeexps[0], ctx->dlfeexps + 1);
    
        if (get_bits1(gb)) { /* bit allocation information */
    
            ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
            ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
            ctx->bit_alloc_params.sgain  = ff_sgaintab[get_bits(gb, 2)];
            ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
            ctx->bit_alloc_params.floor  = ff_floortab[get_bits(gb, 3)];
    
        if (get_bits1(gb)) { /* snroffset */
    
            csnr = (get_bits(gb, 6) - 15) << 4;
    
            if (ctx->cplinu) { /* coupling fine snr offset and fast gain code */
    
                ctx->cplsnroffst = (csnr + get_bits(gb, 4)) << 2;
                ctx->cplfgain = ff_fgaintab[get_bits(gb, 3)];
    
            }
            for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */
    
                ctx->snroffst[i] = (csnr + get_bits(gb, 4)) << 2;
                ctx->fgain[i] = ff_fgaintab[get_bits(gb, 3)];
    
            if (ctx->lfeon) { /* lfe fine snr offset and fast gain code */
    
                ctx->lfesnroffst = (csnr + get_bits(gb, 4)) << 2;
                ctx->lfefgain = ff_fgaintab[get_bits(gb, 3)];
    
    
        if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
            bit_alloc_flags |= 64;
    
            ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
            ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
    
        if (get_bits1(gb)) { /* delta bit allocation information */
    
    
            if (ctx->cplinu) {
                ctx->cpldeltbae = get_bits(gb, 2);
    
                if (ctx->cpldeltbae == DBA_RESERVED) {
    
                    av_log(NULL, AV_LOG_ERROR, "coupling delta bit allocation strategy reserved\n");
                    return -1;
                }
            }
    
            for (i = 0; i < nfchans; i++) {
    
                ctx->deltbae[i] = get_bits(gb, 2);
    
                if (ctx->deltbae[i] == DBA_RESERVED) {
    
                    av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
                    return -1;
                }
            }
    
                if (ctx->cpldeltbae == DBA_NEW) { /*coupling delta offset, len and bit allocation */
    
                    ctx->cpldeltnseg = get_bits(gb, 3);
                    for (seg = 0; seg <= ctx->cpldeltnseg; seg++) {
                        ctx->cpldeltoffst[seg] = get_bits(gb, 5);
                        ctx->cpldeltlen[seg] = get_bits(gb, 4);
                        ctx->cpldeltba[seg] = get_bits(gb, 3);
    
                if (ctx->deltbae[i] == DBA_NEW) {/*channel delta offset, len and bit allocation */
    
                    ctx->deltnseg[i] = get_bits(gb, 3);
                    for (seg = 0; seg <= ctx->deltnseg[i]; seg++) {
                        ctx->deltoffst[i][seg] = get_bits(gb, 5);
                        ctx->deltlen[i][seg] = get_bits(gb, 4);
                        ctx->deltba[i][seg] = get_bits(gb, 3);
    
        } else if(blk == 0) {
            if(ctx->cplinu)
                ctx->cpldeltbae = DBA_NONE;
            for(i=0; i<nfchans; i++) {
                ctx->deltbae[i] = DBA_NONE;
            }
    
            if (ctx->cplinu && (bit_alloc_flags & 64))
    
                ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->cplbap,
                                              ctx->dcplexps, ctx->cplstrtmant,
                                              ctx->cplendmant, ctx->cplsnroffst,
                                              ctx->cplfgain, 0,
                                              ctx->cpldeltbae, ctx->cpldeltnseg,
                                              ctx->cpldeltoffst, ctx->cpldeltlen,
                                              ctx->cpldeltba);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            for (i = 0; i < nfchans; i++)
                if ((bit_alloc_flags >> i) & 1)
    
                    ac3_parametric_bit_allocation(&ctx->bit_alloc_params,
                                                  ctx->bap[i], ctx->dexps[i], 0,
                                                  ctx->endmant[i], ctx->snroffst[i],
                                                  ctx->fgain[i], 0, ctx->deltbae[i],
                                                  ctx->deltnseg[i], ctx->deltoffst[i],
                                                  ctx->deltlen[i], ctx->deltba[i]);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            if (ctx->lfeon && (bit_alloc_flags & 32))
    
                ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->lfebap,
                                              ctx->dlfeexps, 0, 7, ctx->lfesnroffst,
                                              ctx->lfefgain, 1,
                                              DBA_NONE, 0, NULL, NULL, NULL);
    
        if (get_bits1(gb)) { /* unused dummy data */
    
            skipl = get_bits(gb, 9);
            while(skipl--)
    
        }
        /* unpack the transform coefficients
         * * this also uncouples channels if coupling is in use.
         */
        if (get_transform_coeffs(ctx)) {
            av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
            return -1;
        }
    
        /* recover coefficients if rematrixing is in use */
    
        if(ctx->acmod == AC3_ACMOD_STEREO)