Skip to content
Snippets Groups Projects
ac3dec.c 42.4 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * This code is developed as part of Google Summer of Code 2006 Program.
     *
    
     * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
    
     * http://liba52.sourceforge.net
    
     * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
     * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
    
     * This file is part of FFmpeg.
    
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU General Public
    
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
    
     * FFmpeg is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    
     * General Public License for more details.
    
     * You should have received a copy of the GNU General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include <stdio.h>
    #include <stddef.h>
    #include <math.h>
    #include <string.h>
    
    
    #include "crc.h"
    
    #include "random.h"
    
    /**
     * Table of bin locations for rematrixing bands
     * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
     */
    
    static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
    
    /** table for grouping exponents */
    
    static uint8_t exp_ungroup_tab[128][3];
    
    /** tables for ungrouping mantissas */
    
    static int b1_mantissas[32][3];
    static int b2_mantissas[128][3];
    static int b3_mantissas[8];
    static int b4_mantissas[128][2];
    static int b5_mantissas[16];
    
    /**
     * Quantization table: levels for symmetric. bits for asymmetric.
     * reference: Table 7.18 Mapping of bap to Quantizer
     */
    
    static const uint8_t quantization_tab[16] = {
    
        0, 3, 5, 7, 11, 15,
        5, 6, 7, 8, 9, 10, 11, 12, 14, 16
    };
    
    /** dynamic range table. converts codes to scale factors. */
    
    static float dynamic_range_tab[256];
    
    /** Adjustments in dB gain */
    
    #define LEVEL_MINUS_3DB         0.7071067811865476
    #define LEVEL_MINUS_4POINT5DB   0.5946035575013605
    #define LEVEL_MINUS_6DB         0.5000000000000000
    
    #define LEVEL_MINUS_9DB         0.3535533905932738
    
    #define LEVEL_ZERO              0.0000000000000000
    
    #define LEVEL_ONE               1.0000000000000000
    
    static const float gain_levels[6] = {
        LEVEL_ZERO,
        LEVEL_ONE,
        LEVEL_MINUS_3DB,
        LEVEL_MINUS_4POINT5DB,
        LEVEL_MINUS_6DB,
        LEVEL_MINUS_9DB
    };
    
    /**
     * Table for center mix levels
     * reference: Section 5.4.2.4 cmixlev
     */
    
    static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
    
    /**
     * Table for surround mix levels
     * reference: Section 5.4.2.5 surmixlev
     */
    
    static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
    
    
    /**
     * Table for default stereo downmixing coefficients
     * reference: Section 7.8.2 Downmixing Into Two Channels
     */
    static const uint8_t ac3_default_coeffs[8][5][2] = {
        { { 1, 0 }, { 0, 1 },                               },
        { { 2, 2 },                                         },
        { { 1, 0 }, { 0, 1 },                               },
        { { 1, 0 }, { 3, 3 }, { 0, 1 },                     },
        { { 1, 0 }, { 0, 1 }, { 4, 4 },                     },
        { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 },           },
        { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 },           },
        { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
    };
    
    /* override ac3.h to include coupling channel */
    #undef AC3_MAX_CHANNELS
    #define AC3_MAX_CHANNELS 7
    #define CPL_CH 0
    
    
        int channel_mode;                       ///< channel mode (acmod)
    
        int block_switch[AC3_MAX_CHANNELS];     ///< block switch flags
        int dither_flag[AC3_MAX_CHANNELS];      ///< dither flags
    
        int dither_all;                         ///< true if all channels are dithered
    
        int cpl_in_use;                         ///< coupling in use
        int channel_in_cpl[AC3_MAX_CHANNELS];   ///< channel in coupling
        int phase_flags_in_use;                 ///< phase flags in use
    
        int phase_flags[18];                    ///< phase flags
    
        int cpl_band_struct[18];                ///< coupling band structure
        int num_rematrixing_bands;              ///< number of rematrixing bands
        int rematrixing_flags[4];               ///< rematrixing flags
        int exp_strategy[AC3_MAX_CHANNELS];     ///< exponent strategies
    
        int snr_offset[AC3_MAX_CHANNELS];       ///< signal-to-noise ratio offsets
        int fast_gain[AC3_MAX_CHANNELS];        ///< fast gain values (signal-to-mask ratio)
        int dba_mode[AC3_MAX_CHANNELS];         ///< delta bit allocation mode
        int dba_nsegs[AC3_MAX_CHANNELS];        ///< number of delta segments
        uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
        uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
        uint8_t dba_values[AC3_MAX_CHANNELS][8];  ///< delta values for each segment
    
        int sample_rate;                        ///< sample frequency, in Hz
    
        int bit_rate;                           ///< stream bit rate, in bits-per-second
        int frame_size;                         ///< current frame size, in bytes
    
    
        int channels;                           ///< number of total channels
        int fbw_channels;                       ///< number of full-bandwidth channels
    
        int lfe_on;                             ///< lfe channel in use
    
        int lfe_ch;                             ///< index of LFE channel
        int output_mode;                        ///< output channel configuration
        int out_channels;                       ///< number of output channels
    
        int center_mix_level;                   ///< Center mix level index
        int surround_mix_level;                 ///< Surround mix level index
    
        float downmix_coeffs[AC3_MAX_CHANNELS][2];  ///< stereo downmix coefficients
    
        float downmix_coeff_adjust[2];          ///< adjustment needed for each output channel when downmixing
    
        float dynamic_range[2];                 ///< dynamic range
    
        int   cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
    
        int   num_cpl_bands;                    ///< number of coupling bands
        int   num_cpl_subbands;                 ///< number of coupling sub bands
        int   start_freq[AC3_MAX_CHANNELS];     ///< start frequency bin
        int   end_freq[AC3_MAX_CHANNELS];       ///< end frequency bin
    
        AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
    
        int8_t  dexps[AC3_MAX_CHANNELS][256];   ///< decoded exponents
        uint8_t bap[AC3_MAX_CHANNELS][256];     ///< bit allocation pointers
        int16_t psd[AC3_MAX_CHANNELS][256];     ///< scaled exponents
    
        int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
    
        int16_t mask[AC3_MAX_CHANNELS][50];     ///< masking curve values
    
        int fixed_coeffs[AC3_MAX_CHANNELS][256];    ///> fixed-point transform coefficients
    
        DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]);  ///< transform coefficients
    
        int downmixed;                              ///< indicates if coeffs are currently downmixed
    
        MDCTContext imdct_512;                  ///< for 512 sample IMDCT
        MDCTContext imdct_256;                  ///< for 256 sample IMDCT
        DSPContext  dsp;                        ///< for optimization
    
        float       add_bias;                   ///< offset for float_to_int16 conversion
        float       mul_bias;                   ///< scaling for float_to_int16 conversion
    
        DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS][256]);       ///< output after imdct transform and windowing
    
        DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
    
        DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS][256]);        ///< delay - added to the next block
    
        DECLARE_ALIGNED_16(float, tmp_imdct[256]);                      ///< temporary storage for imdct transform
        DECLARE_ALIGNED_16(float, tmp_output[512]);                     ///< temporary storage for output before windowing
        DECLARE_ALIGNED_16(float, window[256]);                         ///< window coefficients
    
        GetBitContext gbc;                      ///< bitstream reader
    
        AVRandomState dith_state;               ///< for dither generation
    
        AVCodecContext *avctx;                  ///< parent context
    
    /**
     * Symmetrical Dequantization
     * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
     *            Tables 7.19 to 7.23
     */
    
    symmetric_dequant(int code, int levels)
    
        return ((code - (levels >> 1)) << 24) / levels;
    
    static void ac3_tables_init(void)
    
        /* generate grouped mantissa tables
           reference: Section 7.3.5 Ungrouping of Mantissas */
        for(i=0; i<32; i++) {
            /* bap=1 mantissas */
            b1_mantissas[i][0] = symmetric_dequant( i / 9     , 3);
            b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
            b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
        }
        for(i=0; i<128; i++) {
            /* bap=2 mantissas */
            b2_mantissas[i][0] = symmetric_dequant( i / 25     , 5);
            b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
            b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
    
            /* bap=4 mantissas */
            b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
            b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
        }
        /* generate ungrouped mantissa tables
           reference: Tables 7.21 and 7.23 */
        for(i=0; i<7; i++) {
            /* bap=3 mantissas */
            b3_mantissas[i] = symmetric_dequant(i, 7);
        }
        for(i=0; i<15; i++) {
            /* bap=5 mantissas */
            b5_mantissas[i] = symmetric_dequant(i, 15);
        }
    
        /* generate dynamic range table
           reference: Section 7.7.1 Dynamic Range Control */
        for(i=0; i<256; i++) {
            int v = (i >> 5) - ((i >> 7) << 3) - 5;
    
            dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
    
        /* generate exponent tables
           reference: Section 7.1.3 Exponent Decoding */
        for(i=0; i<128; i++) {
    
            exp_ungroup_tab[i][0] =  i / 25;
            exp_ungroup_tab[i][1] = (i % 25) / 5;
            exp_ungroup_tab[i][2] = (i % 25) % 5;
    
    static int ac3_decode_init(AVCodecContext *avctx)
    {
    
        AC3DecodeContext *s = avctx->priv_data;
        s->avctx = avctx;
    
        ff_mdct_init(&s->imdct_256, 8, 1);
        ff_mdct_init(&s->imdct_512, 9, 1);
    
        ff_kbd_window_init(s->window, 5.0, 256);
    
        dsputil_init(&s->dsp, avctx);
        av_init_random(0, &s->dith_state);
    
        /* set bias values for float to int16 conversion */
    
        if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
            s->add_bias = 385.0f;
            s->mul_bias = 1.0f;
    
            s->add_bias = 0.0f;
            s->mul_bias = 32767.0f;
    
        /* allow downmixing to stereo or mono */
        if (avctx->channels > 0 && avctx->request_channels > 0 &&
                avctx->request_channels < avctx->channels &&
                avctx->request_channels <= 2) {
            avctx->channels = avctx->request_channels;
        }
    
     * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
    
     * GetBitContext within AC3DecodeContext must point to
     * start of the synchronized ac3 bitstream.
     */
    
    static int ac3_parse_header(AC3DecodeContext *s)
    
        GetBitContext *gbc = &s->gbc;
    
        err = ff_ac3_parse_header(gbc->buffer, &hdr);
    
        if(hdr.bitstream_id > 10)
            return AC3_PARSE_ERROR_BSID;
    
    
        /* get decoding parameters from header info */
    
        s->bit_alloc_params.sr_code     = hdr.sr_code;
        s->channel_mode                 = hdr.channel_mode;
    
        s->lfe_on                       = hdr.lfe_on;
    
        s->bit_alloc_params.sr_shift    = hdr.sr_shift;
    
        s->sample_rate                  = hdr.sample_rate;
    
        s->bit_rate                     = hdr.bit_rate;
        s->channels                     = hdr.channels;
        s->fbw_channels                 = s->channels - s->lfe_on;
        s->lfe_ch                       = s->fbw_channels + 1;
        s->frame_size                   = hdr.frame_size;
    
    
        /* set default output to all source channels */
    
        s->out_channels = s->channels;
        s->output_mode = s->channel_mode;
        if(s->lfe_on)
            s->output_mode |= AC3_OUTPUT_LFEON;
    
        /* set default mix levels */
        s->center_mix_level   = 3;  // -4.5dB
        s->surround_mix_level = 4;  // -6.0dB
    
    
        /* skip over portion of header which has already been read */
    
        skip_bits(gbc, 16); // skip the sync_word
        skip_bits(gbc, 16); // skip crc1
        skip_bits(gbc, 8);  // skip fscod and frmsizecod
        skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
    
        if(s->channel_mode == AC3_CHMODE_STEREO) {
    
            skip_bits(gbc, 2); // skip dsurmod
    
            if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
    
                s->center_mix_level = center_levels[get_bits(gbc, 2)];
    
                s->surround_mix_level = surround_levels[get_bits(gbc, 2)];
    
        skip_bits1(gbc); // skip lfeon
    
        /* read the rest of the bsi. read twice for dual mono mode. */
    
            skip_bits(gbc, 5); // skip dialog normalization
            if (get_bits1(gbc))
                skip_bits(gbc, 8); //skip compression
            if (get_bits1(gbc))
                skip_bits(gbc, 8); //skip language code
            if (get_bits1(gbc))
                skip_bits(gbc, 7); //skip audio production information
    
        skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
    
        /* skip the timecodes (or extra bitstream information for Alternate Syntax)
           TODO: read & use the xbsi1 downmix levels */
    
        if (get_bits1(gbc))
            skip_bits(gbc, 14); //skip timecode1 / xbsi1
        if (get_bits1(gbc))
            skip_bits(gbc, 14); //skip timecode2 / xbsi2
    
        /* skip additional bitstream info */
    
        if (get_bits1(gbc)) {
            i = get_bits(gbc, 6);
    
                skip_bits(gbc, 8);
    
        return 0;
    }
    
    /**
     * Set stereo downmixing coefficients based on frame header info.
     * reference: Section 7.8.2 Downmixing Into Two Channels
     */
    static void set_downmix_coeffs(AC3DecodeContext *s)
    {
        int i;
        float cmix = gain_levels[s->center_mix_level];
        float smix = gain_levels[s->surround_mix_level];
    
    
        for(i=0; i<s->fbw_channels; i++) {
            s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
            s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
    
        if(s->channel_mode > 1 && s->channel_mode & 1) {
    
            s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
    
        if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
            int nf = s->channel_mode - 2;
    
            s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
    
        if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
            int nf = s->channel_mode - 4;
    
            s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
    
        /* calculate adjustment needed for each channel to avoid clipping */
        s->downmix_coeff_adjust[0] = s->downmix_coeff_adjust[1] = 0.0f;
    
            s->downmix_coeff_adjust[0] += s->downmix_coeffs[i][0];
            s->downmix_coeff_adjust[1] += s->downmix_coeffs[i][1];
    
        s->downmix_coeff_adjust[0] = 1.0f / s->downmix_coeff_adjust[0];
        s->downmix_coeff_adjust[1] = 1.0f / s->downmix_coeff_adjust[1];
    
     * Decode the grouped exponents according to exponent strategy.
     * reference: Section 7.1.3 Exponent Decoding
    
    static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
    
        int i, j, grp, group_size;
    
        int dexp[256];
        int expacc, prevexp;
    
        /* unpack groups */
    
        group_size = exp_strategy + (exp_strategy == EXP_D45);
    
        for(grp=0,i=0; grp<ngrps; grp++) {
    
            expacc = get_bits(gbc, 7);
    
            dexp[i++] = exp_ungroup_tab[expacc][0];
            dexp[i++] = exp_ungroup_tab[expacc][1];
            dexp[i++] = exp_ungroup_tab[expacc][2];
    
        /* convert to absolute exps and expand groups */
        prevexp = absexp;
        for(i=0; i<ngrps*3; i++) {
            prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
    
            for(j=0; j<group_size; j++) {
                dexps[(i*group_size)+j] = prevexp;
    
     * Generate transform coefficients for each coupled channel in the coupling
    
     * range using the coupling coefficients and coupling coordinates.
     * reference: Section 7.4.3 Coupling Coordinate Format
     */
    
    static void uncouple_channels(AC3DecodeContext *s)
    
        i = s->start_freq[CPL_CH];
        for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
    
                    for(ch=1; ch<=s->fbw_channels; ch++) {
    
                            s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
    
                                s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
    
            } while(s->cpl_band_struct[subbnd]);
    
    /**
     * Grouped mantissas for 3-level 5-level and 11-level quantization
     */
    typedef struct {
    
        int b1_mant[3];
        int b2_mant[3];
        int b4_mant[2];
    
        int b1ptr;
        int b2ptr;
        int b4ptr;
    
    /**
     * Get the transform coefficients for a particular channel
     * reference: Section 7.3 Quantization and Decoding of Mantissas
     */
    
    static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
    
        GetBitContext *gbc = &s->gbc;
    
        exps = s->dexps[ch_index];
        bap = s->bap[ch_index];
    
        start = s->start_freq[ch_index];
        end = s->end_freq[ch_index];
    
                    coeffs[i] = (av_random(&s->dith_state) & 0x7FFFFF) - 4194304;
    
                        gcode = get_bits(gbc, 5);
    
                        m->b1_mant[0] = b1_mantissas[gcode][0];
                        m->b1_mant[1] = b1_mantissas[gcode][1];
                        m->b1_mant[2] = b1_mantissas[gcode][2];
                        m->b1ptr = 0;
    
                    coeffs[i] = m->b1_mant[m->b1ptr++];
    
                        gcode = get_bits(gbc, 7);
    
                        m->b2_mant[0] = b2_mantissas[gcode][0];
                        m->b2_mant[1] = b2_mantissas[gcode][1];
                        m->b2_mant[2] = b2_mantissas[gcode][2];
                        m->b2ptr = 0;
    
                    coeffs[i] = m->b2_mant[m->b2ptr++];
    
                    coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
    
                        gcode = get_bits(gbc, 7);
    
                        m->b4_mant[0] = b4_mantissas[gcode][0];
                        m->b4_mant[1] = b4_mantissas[gcode][1];
                        m->b4ptr = 0;
    
                    coeffs[i] = m->b4_mant[m->b4ptr++];
    
                    coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
    
                    /* asymmetric dequantization */
    
                    int qlevel = quantization_tab[tbap];
                    coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
    
     * Remove random dithering from coefficients with zero-bit mantissas
    
     * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
     */
    
    static void remove_dithering(AC3DecodeContext *s) {
    
        for(ch=1; ch<=s->fbw_channels; ch++) {
            if(!s->dither_flag[ch]) {
    
                bap = s->bap[ch];
                if(s->channel_in_cpl[ch])
                    end = s->start_freq[CPL_CH];
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                    if(!bap[i])
    
                if(s->channel_in_cpl[ch]) {
                    bap = s->bap[CPL_CH];
                    for(; i<s->end_freq[CPL_CH]; i++) {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
                        if(!bap[i])
    
    /**
     * Get the transform coefficients.
    
    static int get_transform_coeffs(AC3DecodeContext *s)
    
        m.b1ptr = m.b2ptr = m.b4ptr = 3;
    
        for (ch = 1; ch <= s->channels; ch++) {
    
            /* transform coefficients for full-bandwidth channel */
    
            if (get_transform_coeffs_ch(s, ch, &m))
    
            /* tranform coefficients for coupling channel come right after the
               coefficients for the first coupled channel*/
    
                    if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
                        av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
    
                s->transform_coeffs[ch][end] = 0;
    
        /* if any channel doesn't use dithering, zero appropriate coefficients */
    
        if(!s->dither_all)
            remove_dithering(s);
    
     * reference: Section 7.5.4 Rematrixing : Decoding Technique
     */
    
    static void do_rematrixing(AC3DecodeContext *s)
    
        int bnd, i;
    
        end = FFMIN(s->end_freq[1], s->end_freq[2]);
    
        for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
            if(s->rematrixing_flags[bnd]) {
    
                bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
                for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
    
                    tmp0 = s->fixed_coeffs[1][i];
                    tmp1 = s->fixed_coeffs[2][i];
                    s->fixed_coeffs[1][i] = tmp0 + tmp1;
                    s->fixed_coeffs[2][i] = tmp0 - tmp1;
    
    /**
     * Perform the 256-point IMDCT
    
    static void do_imdct_256(AC3DecodeContext *s, int chindex)
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        int i, k;
    
        DECLARE_ALIGNED_16(float, x[128]);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        FFTComplex z[2][64];
    
        float *o_ptr = s->tmp_output;
    
    Justin Ruggles's avatar
    Justin Ruggles committed
    
        for(i=0; i<2; i++) {
            /* de-interleave coefficients */
            for(k=0; k<128; k++) {
    
                x[k] = s->transform_coeffs[chindex][2*k+i];
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            /* run standard IMDCT */
    
            s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
    
    Justin Ruggles's avatar
    Justin Ruggles committed
    
            /* reverse the post-rotation & reordering from standard IMDCT */
            for(k=0; k<32; k++) {
                z[i][32+k].re = -o_ptr[128+2*k];
                z[i][32+k].im = -o_ptr[2*k];
                z[i][31-k].re =  o_ptr[2*k+1];
                z[i][31-k].im =  o_ptr[128+2*k+1];
            }
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        /* apply AC-3 post-rotation & reordering */
        for(k=0; k<64; k++) {
            o_ptr[    2*k  ] = -z[0][   k].im;
            o_ptr[    2*k+1] =  z[0][63-k].re;
            o_ptr[128+2*k  ] = -z[0][   k].re;
            o_ptr[128+2*k+1] =  z[0][63-k].im;
            o_ptr[256+2*k  ] = -z[1][   k].re;
            o_ptr[256+2*k+1] =  z[1][63-k].im;
            o_ptr[384+2*k  ] =  z[1][   k].im;
            o_ptr[384+2*k+1] = -z[1][63-k].re;
        }
    
    /**
     * Inverse MDCT Transform.
     * Convert frequency domain coefficients to time-domain audio samples.
     * reference: Section 7.9.4 Transformation Equations
     */
    
    static inline void do_imdct(AC3DecodeContext *s, int channels)
    
    Justin Ruggles's avatar
    Justin Ruggles committed
        int ch;
    
        for (ch=1; ch<=channels; ch++) {
    
            if (s->block_switch[ch]) {
                do_imdct_256(s, ch);
    
                s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
    
                                            s->transform_coeffs[ch], s->tmp_imdct);
    
            /* For the first half of the block, apply the window, add the delay
               from the previous block, and send to output */
    
            s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
                                         s->window, s->delay[ch-1], 0, 256, 1);
    
            /* For the second half of the block, apply the window and store the
               samples to delay, to be combined with the next block */
    
            s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
    
     * Downmix the output to mono or stereo.
    
    static void ac3_downmix(AC3DecodeContext *s,
                            float samples[AC3_MAX_CHANNELS][256], int ch_offset)
    
    
        for(i=0; i<256; i++) {
    
                v0 += samples[j+ch_offset][i] * s->downmix_coeffs[j][0];
                v1 += samples[j+ch_offset][i] * s->downmix_coeffs[j][1];
    
            v0 *= s->downmix_coeff_adjust[0];
            v1 *= s->downmix_coeff_adjust[1];
    
            if(s->output_mode == AC3_CHMODE_MONO) {
    
                samples[ch_offset][i] = (v0 + v1) * LEVEL_MINUS_3DB;
    
            } else if(s->output_mode == AC3_CHMODE_STEREO) {
    
                samples[  ch_offset][i] = v0;
                samples[1+ch_offset][i] = v1;
    
    /**
     * Upmix delay samples from stereo to original channel layout.
     */
    static void ac3_upmix_delay(AC3DecodeContext *s)
    {
        int channel_data_size = sizeof(s->delay[0]);
        switch(s->channel_mode) {
            case AC3_CHMODE_DUALMONO:
            case AC3_CHMODE_STEREO:
                /* upmix mono to stereo */
                memcpy(s->delay[1], s->delay[0], channel_data_size);
                break;
            case AC3_CHMODE_2F2R:
                memset(s->delay[3], 0, channel_data_size);
            case AC3_CHMODE_2F1R:
                memset(s->delay[2], 0, channel_data_size);
                break;
            case AC3_CHMODE_3F2R:
                memset(s->delay[4], 0, channel_data_size);
            case AC3_CHMODE_3F1R:
                memset(s->delay[3], 0, channel_data_size);
            case AC3_CHMODE_3F:
                memcpy(s->delay[2], s->delay[1], channel_data_size);
                memset(s->delay[1], 0, channel_data_size);
                break;
        }
    }
    
    
    /**
     * Parse an audio block from AC-3 bitstream.
    
    static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
    
        int fbw_channels = s->fbw_channels;
        int channel_mode = s->channel_mode;
    
        int different_transforms;
        int downmix_output;
    
        GetBitContext *gbc = &s->gbc;
    
        different_transforms = 0;
        for (ch = 1; ch <= fbw_channels; ch++) {
    
            s->block_switch[ch] = get_bits1(gbc);
    
            if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
                different_transforms = 1;
        }
    
        for (ch = 1; ch <= fbw_channels; ch++) {
    
            s->dither_flag[ch] = get_bits1(gbc);
            if(!s->dither_flag[ch])
                s->dither_all = 0;
    
        /* dynamic range */
    
            if(get_bits1(gbc)) {
    
                s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
    
                                      s->avctx->drc_scale)+1.0;
    
        if (get_bits1(gbc)) {
    
            s->cpl_in_use = get_bits1(gbc);
            if (s->cpl_in_use) {
    
                int cpl_begin_freq, cpl_end_freq;
    
                /* determine which channels are coupled */
    
                for (ch = 1; ch <= fbw_channels; ch++)
    
                    s->channel_in_cpl[ch] = get_bits1(gbc);
    
                if (channel_mode == AC3_CHMODE_STEREO)
    
                    s->phase_flags_in_use = get_bits1(gbc);
    
                /* coupling frequency range and band structure */
    
                cpl_begin_freq = get_bits(gbc, 4);
                cpl_end_freq = get_bits(gbc, 4);
    
                if (3 + cpl_end_freq - cpl_begin_freq < 0) {
    
                    av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
    
                s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
                s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
                s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
                for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
    
                    if (get_bits1(gbc)) {
    
                        s->cpl_band_struct[bnd] = 1;
                        s->num_cpl_bands--;
    
                s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
    
            } else {
    
                for (ch = 1; ch <= fbw_channels; ch++)
    
            int cpl_coords_exist = 0;
    
            for (ch = 1; ch <= fbw_channels; ch++) {
    
                    if (get_bits1(gbc)) {
    
                        int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
                        cpl_coords_exist = 1;
    
                        master_cpl_coord = 3 * get_bits(gbc, 2);
    
                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
    
                            cpl_coord_exp = get_bits(gbc, 4);
                            cpl_coord_mant = get_bits(gbc, 4);
    
                            if (cpl_coord_exp == 15)
    
                                s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
    
                                s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
                            s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
    
            if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
    
                for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
    
                    s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
    
        /* stereo rematrixing strategy and band structure */
    
        if (channel_mode == AC3_CHMODE_STEREO) {
    
            if (get_bits1(gbc)) {
    
                s->num_rematrixing_bands = 4;
                if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
                    s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
                for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
                    s->rematrixing_flags[bnd] = get_bits1(gbc);
    
        /* exponent strategies for each channel */
    
        s->exp_strategy[CPL_CH] = EXP_REUSE;
        s->exp_strategy[s->lfe_ch] = EXP_REUSE;
        for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
            if(ch == s->lfe_ch)
                s->exp_strategy[ch] = get_bits(gbc, 1);
    
                s->exp_strategy[ch] = get_bits(gbc, 2);
            if(s->exp_strategy[ch] != EXP_REUSE)
    
        for (ch = 1; ch <= fbw_channels; ch++) {
    
            s->start_freq[ch] = 0;
            if (s->exp_strategy[ch] != EXP_REUSE) {
                int prev = s->end_freq[ch];
                if (s->channel_in_cpl[ch])
                    s->end_freq[ch] = s->start_freq[CPL_CH];
    
                    int bandwidth_code = get_bits(gbc, 6);
    
                    if (bandwidth_code > 60) {
    
                        av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
    
                    s->end_freq[ch] = bandwidth_code * 3 + 73;
    
                if(blk > 0 && s->end_freq[ch] != prev)
    
        s->start_freq[s->lfe_ch] = 0;
        s->end_freq[s->lfe_ch] = 7;
    
        /* decode exponents for each channel */
    
        for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
            if (s->exp_strategy[ch] != EXP_REUSE) {
    
                int group_size, num_groups;
    
                group_size = 3 << (s->exp_strategy[ch] - 1);
    
                    num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
                else if(ch == s->lfe_ch)
    
                    num_groups = 2;
    
                    num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
                s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
                decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
                                 &s->dexps[ch][s->start_freq[ch]+!!ch]);
                if(ch != CPL_CH && ch != s->lfe_ch)
    
                    skip_bits(gbc, 2); /* skip gainrng */
    
        /* bit allocation information */
    
        if (get_bits1(gbc)) {
    
            s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
            s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
            s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
            s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
            s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
            for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
    
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
            }
    
        /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
    
        if (get_bits1(gbc)) {
    
            csnr = (get_bits(gbc, 6) - 15) << 4;
    
            for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
                s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
                s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
    
        /* coupling leak information */
    
        if (s->cpl_in_use && get_bits1(gbc)) {
            s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
            s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
    
            bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
    
        /* delta bit allocation information */
    
        if (get_bits1(gbc)) {
    
            /* delta bit allocation exists (strategy) */
    
            for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
                s->dba_mode[ch] = get_bits(gbc, 2);
                if (s->dba_mode[ch] == DBA_RESERVED) {