Skip to content
Snippets Groups Projects
ac3enc.c 54.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Fabrice Bellard's avatar
    Fabrice Bellard committed
    /*
    
     * Copyright (c) 2000 Fabrice Bellard
    
     * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
     * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
    
     * version 2.1 of the License, or (at your option) any later version.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * FFmpeg is distributed in the hope that it will be useful,
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
    
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * You should have received a copy of the GNU Lesser General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     */
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
    
    /**
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
     */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    //#define DEBUG
    
    #include "libavcore/audioconvert.h"
    
    #include "libavutil/crc.h"
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    #include "avcodec.h"
    
    #include "ac3.h"
    
    #include "audioconvert.h"
    
    #ifndef CONFIG_AC3ENC_FLOAT
    #define CONFIG_AC3ENC_FLOAT 0
    #endif
    
    
    
    /** Maximum number of exponent groups. +1 for separate DC exponent. */
    #define AC3_MAX_EXP_GROUPS 85
    
    
    /** Scale a float value by 2^bits and convert to an integer. */
    
    Justin Ruggles's avatar
    Justin Ruggles committed
    #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
    
    
    #if CONFIG_AC3ENC_FLOAT
    #include "ac3enc_float.h"
    #else
    
    /**
     * Data for a single audio block.
     */
    typedef struct AC3Block {
    
        uint8_t  **bap;                             ///< bit allocation pointers (bap)
    
        CoefType **mdct_coef;                       ///< MDCT coefficients
    
        int32_t  **fixed_coef;                      ///< fixed-point MDCT coefficients
    
        uint8_t  **exp;                             ///< original exponents
        uint8_t  **grouped_exp;                     ///< grouped exponents
        int16_t  **psd;                             ///< psd per frequency bin
        int16_t  **band_psd;                        ///< psd per critical band
        int16_t  **mask;                            ///< masking curve
        uint16_t **qmant;                           ///< quantized mantissas
        uint8_t  exp_strategy[AC3_MAX_CHANNELS];    ///< exponent strategies
        int8_t   exp_shift[AC3_MAX_CHANNELS];       ///< exponent shift values
    
    typedef struct AC3EncodeContext {
    
        PutBitContext pb;                       ///< bitstream writer context
    
        AC3MDCTContext mdct;                    ///< MDCT context
    
        AC3Block blocks[AC3_MAX_BLOCKS];        ///< per-block info
    
    
        int bitstream_id;                       ///< bitstream id                           (bsid)
        int bitstream_mode;                     ///< bitstream mode                         (bsmod)
    
        int bit_rate;                           ///< target bit rate, in bits-per-second
        int sample_rate;                        ///< sampling frequency, in Hz
    
        int frame_size_min;                     ///< minimum frame size in case rounding is necessary
    
        int frame_size;                         ///< current frame size in bytes
    
        int frame_size_code;                    ///< frame size code                        (frmsizecod)
    
        uint16_t crc_inv[2];
    
        int bits_written;                       ///< bit count    (used to avg. bitrate)
        int samples_written;                    ///< sample count (used to avg. bitrate)
    
        int fbw_channels;                       ///< number of full-bandwidth channels      (nfchans)
        int channels;                           ///< total number of channels               (nchans)
        int lfe_on;                             ///< indicates if there is an LFE channel   (lfeon)
        int lfe_channel;                        ///< channel index of the LFE channel
        int channel_mode;                       ///< channel mode                           (acmod)
        const uint8_t *channel_map;             ///< channel map used to reorder channels
    
        int cutoff;                             ///< user-specified cutoff frequency, in Hz
    
        int bandwidth_code[AC3_MAX_CHANNELS];   ///< bandwidth code (0 to 60)               (chbwcod)
    
        int nb_coefs[AC3_MAX_CHANNELS];
    
        /* bitrate allocation control */
    
        int slow_gain_code;                     ///< slow gain code                         (sgaincod)
        int slow_decay_code;                    ///< slow decay code                        (sdcycod)
        int fast_decay_code;                    ///< fast decay code                        (fdcycod)
        int db_per_bit_code;                    ///< dB/bit code                            (dbpbcod)
        int floor_code;                         ///< floor code                             (floorcod)
        AC3BitAllocParameters bit_alloc;        ///< bit allocation parameters
        int coarse_snr_offset;                  ///< coarse SNR offsets                     (csnroffst)
        int fast_gain_code[AC3_MAX_CHANNELS];   ///< fast gain codes (signal-to-mask ratio) (fgaincod)
        int fine_snr_offset[AC3_MAX_CHANNELS];  ///< fine SNR offsets                       (fsnroffst)
    
        int frame_bits_fixed;                   ///< number of non-coefficient bits for fixed parameters
    
        int frame_bits;                         ///< all frame bits except exponents and mantissas
        int exponent_bits;                      ///< number of bits used for exponents
    
        /* mantissa encoding */
    
        int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
    
        uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
    
        SampleType **planar_samples;
    
        uint8_t *bap_buffer;
        uint8_t *bap1_buffer;
    
        uint8_t *exp_buffer;
        uint8_t *grouped_exp_buffer;
        int16_t *psd_buffer;
        int16_t *band_psd_buffer;
        int16_t *mask_buffer;
        uint16_t *qmant_buffer;
    
        DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE];
    
    } AC3EncodeContext;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
    /* prototypes for functions in ac3enc_fixed.c and ac3enc_float.c */
    
    
    static av_cold void mdct_end(AC3MDCTContext *mdct);
    
    static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
                                 int nbits);
    
    static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in);
    
    static void apply_window(SampleType *output, const SampleType *input,
                             const SampleType *window, int n);
    
    static int normalize_samples(AC3EncodeContext *s);
    
    
    static void scale_coefficients(AC3EncodeContext *s);
    
    
    /**
     * LUT for number of exponent groups.
     * exponent_group_tab[exponent strategy-1][number of coefficients]
     */
    
    static uint8_t exponent_group_tab[3][256];
    
    /**
     * List of supported channel layouts.
     */
    static const int64_t ac3_channel_layouts[] = {
         AV_CH_LAYOUT_MONO,
         AV_CH_LAYOUT_STEREO,
         AV_CH_LAYOUT_2_1,
         AV_CH_LAYOUT_SURROUND,
         AV_CH_LAYOUT_2_2,
         AV_CH_LAYOUT_QUAD,
         AV_CH_LAYOUT_4POINT0,
         AV_CH_LAYOUT_5POINT0,
         AV_CH_LAYOUT_5POINT0_BACK,
        (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
        (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
        (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
        (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
        (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
        (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
        (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
         AV_CH_LAYOUT_5POINT1,
         AV_CH_LAYOUT_5POINT1_BACK,
         0
    };
    
    
    
    /**
     * Adjust the frame size to make the average bit rate match the target bit rate.
     * This is only needed for 11025, 22050, and 44100 sample rates.
     */
    static void adjust_frame_size(AC3EncodeContext *s)
    {
        while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
            s->bits_written    -= s->bit_rate;
            s->samples_written -= s->sample_rate;
        }
    
        s->frame_size = s->frame_size_min +
                        2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
    
        s->bits_written    += s->frame_size * 8;
        s->samples_written += AC3_FRAME_SIZE;
    }
    
    
    
    /**
     * Deinterleave input samples.
     * Channels are reordered from FFmpeg's default order to AC-3 order.
     */
    static void deinterleave_input_samples(AC3EncodeContext *s,
    
    {
        int ch, i;
    
        /* deinterleave and remap input samples */
        for (ch = 0; ch < s->channels; ch++) {
    
            int sinc;
    
            /* copy last 256 samples of previous frame to the start of the current frame */
    
            memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
    
                   AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
    
    
            /* deinterleave */
            sinc = s->channels;
            sptr = samples + s->channel_map[ch];
            for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
    
    /**
     * Apply the MDCT to input samples to generate frequency coefficients.
     * This applies the KBD window and normalizes the input to reduce precision
     * loss due to fixed-point calculations.
     */
    
    static void apply_mdct(AC3EncodeContext *s)
    
    {
        int blk, ch;
    
        for (ch = 0; ch < s->channels; ch++) {
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
                const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
    
                apply_window(s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE);
    
                block->exp_shift[ch] = normalize_samples(s);
    
                mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples);
    
    /**
     * Initialize exponent tables.
     */
    static av_cold void exponent_init(AC3EncodeContext *s)
    {
        int i;
        for (i = 73; i < 256; i++) {
            exponent_group_tab[0][i] = (i - 1) /  3;
            exponent_group_tab[1][i] = (i + 2) /  6;
            exponent_group_tab[2][i] = (i + 8) / 12;
        }
    
        /* LFE */
        exponent_group_tab[0][7] = 2;
    
    /**
     * Extract exponents from the MDCT coefficients.
     * This takes into account the normalization that was done to the input samples
     * by adjusting the exponents by the exponent shift values.
     */
    
    static void extract_exponents(AC3EncodeContext *s)
    
    {
        int blk, ch, i;
    
        for (ch = 0; ch < s->channels; ch++) {
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
                int32_t *coef = block->fixed_coef[ch];
    
                int exp_shift  = block->exp_shift[ch];
    
                for (i = 0; i < AC3_MAX_COEFS; i++) {
                    int e;
    
    /**
     * Exponent Difference Threshold.
     * New exponents are sent if their SAD exceed this number.
     */
    
    #define EXP_DIFF_THRESHOLD 1000
    
    
    /**
     * Calculate exponent strategies for all blocks in a single channel.
     */
    
    static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy,
                                        uint8_t **exp)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        int exp_diff;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* estimate if the exponent variation & decide if they should be
           reused in the next frame */
    
        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
    
            exp_diff = s->dsp.sad[0](NULL, exp[blk], exp[blk-1], 16, 16);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            if (exp_diff > EXP_DIFF_THRESHOLD)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            else
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* now select the encoding strategy type : if exponents are often
           recoded, we use a coarse encoding */
    
        blk = 0;
        while (blk < AC3_MAX_BLOCKS) {
            blk1 = blk + 1;
    
            while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
    
            case 1:  exp_strategy[blk] = EXP_D45; break;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            case 2:
    
            case 3:  exp_strategy[blk] = EXP_D25; break;
            default: exp_strategy[blk] = EXP_D15; break;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            }
    
    /**
     * Calculate exponent strategies for all channels.
    
     * Array arrangement is reversed to simplify the per-channel calculation.
    
    static void compute_exp_strategy(AC3EncodeContext *s)
    
        uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
        uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
        int ch, blk;
    
        for (ch = 0; ch < s->fbw_channels; ch++) {
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
                exp1[ch][blk]     = s->blocks[blk].exp[ch];
                exp_str1[ch][blk] = s->blocks[blk].exp_strategy[ch];
    
            compute_exp_strategy_ch(s, exp_str1[ch], exp1[ch]);
    
    
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
    
                s->blocks[blk].exp_strategy[ch] = exp_str1[ch][blk];
    
            s->blocks[0].exp_strategy[ch] = EXP_D15;
    
            for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
    
                s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
    
    /**
     * Set each encoded exponent in a block to the minimum of itself and the
     * exponent in the same frequency bin of a following block.
     * exp[i] = min(exp[i], exp1[i]
     */
    
    static void exponent_min(uint8_t *exp, uint8_t *exp1, int n)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
        int i;
    
        for (i = 0; i < n; i++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            if (exp1[i] < exp[i])
                exp[i] = exp1[i];
        }
    }
    
    /**
     * Update the exponents so that they are the ones the decoder will decode.
     */
    
    static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* for each group, compute the minimum exponent */
    
        switch(exp_strategy) {
        case EXP_D25:
            for (i = 1, k = 1; i <= nb_groups; i++) {
                uint8_t exp_min = exp[k];
                if (exp[k+1] < exp_min)
                    exp_min = exp[k+1];
                exp[i] = exp_min;
                k += 2;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            }
    
            break;
        case EXP_D45:
            for (i = 1, k = 1; i <= nb_groups; i++) {
                uint8_t exp_min = exp[k];
                if (exp[k+1] < exp_min)
                    exp_min = exp[k+1];
                if (exp[k+2] < exp_min)
                    exp_min = exp[k+2];
                if (exp[k+3] < exp_min)
                    exp_min = exp[k+3];
                exp[i] = exp_min;
                k += 4;
            }
            break;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* constraint for DC exponent */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        /* decrease the delta between each groups to within 2 so that they can be
           differentially encoded */
        for (i = 1; i <= nb_groups; i++)
    
            exp[i] = FFMIN(exp[i], exp[i-1] + 2);
    
            exp[i] = FFMIN(exp[i], exp[i+1] + 2);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* now we have the exponent values the decoder will see */
    
        switch (exp_strategy) {
        case EXP_D25:
            for (i = nb_groups, k = nb_groups * 2; i > 0; i--) {
                uint8_t exp1 = exp[i];
                exp[k--] = exp1;
                exp[k--] = exp1;
            }
            break;
        case EXP_D45:
            for (i = nb_groups, k = nb_groups * 4; i > 0; i--) {
                exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i];
                k -= 4;
            }
            break;
    
    /**
     * Encode exponents from original extracted form to what the decoder will see.
     * This copies and groups exponents based on exponent strategy and reduces
     * deltas between adjacent exponent groups so that they can be differentially
     * encoded.
     */
    
    static void encode_exponents(AC3EncodeContext *s)
    
    {
        int blk, blk1, blk2, ch;
    
    
        for (ch = 0; ch < s->channels; ch++) {
            blk = 0;
    
            while (blk < AC3_MAX_BLOCKS) {
                blk1 = blk + 1;
    
                /* for the EXP_REUSE case we select the min of the exponents */
    
                while (blk1 < AC3_MAX_BLOCKS && block1->exp_strategy[ch] == EXP_REUSE) {
                    exponent_min(block->exp[ch], block1->exp[ch], s->nb_coefs[ch]);
    
                encode_exponents_blk_ch(block->exp[ch], s->nb_coefs[ch],
    
                /* copy encoded exponents for reuse case */
    
                block2 = block + 1;
                for (blk2 = blk+1; blk2 < blk1; blk2++, block2++) {
    
                    memcpy(block2->exp[ch], block->exp[ch],
    
                           s->nb_coefs[ch] * sizeof(uint8_t));
                }
                blk = blk1;
    
    }
    
    
    /**
     * Group exponents.
     * 3 delta-encoded exponents are in each 7-bit group. The number of groups
     * varies depending on exponent strategy and bandwidth.
     */
    
    static void group_exponents(AC3EncodeContext *s)
    
        int group_size, nb_groups, bit_count;
    
        uint8_t *p;
        int delta0, delta1, delta2;
        int exp0, exp1;
    
        bit_count = 0;
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
            for (ch = 0; ch < s->channels; ch++) {
    
                if (block->exp_strategy[ch] == EXP_REUSE) {
    
                group_size = block->exp_strategy[ch] + (block->exp_strategy[ch] == EXP_D45);
    
                nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
                bit_count += 4 + (nb_groups * 7);
    
    
                /* remaining exponents are delta encoded */
    
                    /* merge three delta in one code */
                    exp0   = exp1;
                    exp1   = p[0];
                    p     += group_size;
                    delta0 = exp1 - exp0 + 2;
    
                    exp0   = exp1;
                    exp1   = p[0];
                    p     += group_size;
                    delta1 = exp1 - exp0 + 2;
    
                    exp0   = exp1;
                    exp1   = p[0];
                    p     += group_size;
                    delta2 = exp1 - exp0 + 2;
    
    
                    block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
    
        s->exponent_bits = bit_count;
    
    }
    
    
    /**
     * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
     * Extract exponents from MDCT coefficients, calculate exponent strategies,
     * and encode final exponents.
     */
    
    static void process_exponents(AC3EncodeContext *s)
    
    /**
     * Count frame bits that are based solely on fixed parameters.
     * This only has to be run once when the encoder is initialized.
     */
    static void count_frame_bits_fixed(AC3EncodeContext *s)
    {
        static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
        int blk;
        int frame_bits;
    
        /* assumptions:
         *   no dynamic range codes
         *   no channel coupling
         *   no rematrixing
         *   bit allocation parameters do not change between blocks
         *   SNR offsets do not change between blocks
         *   no delta bit allocation
         *   no skipped data
         *   no auxilliary data
         */
    
        /* header size */
        frame_bits = 65;
        frame_bits += frame_bits_inc[s->channel_mode];
    
        /* audio blocks */
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
            if (s->channel_mode == AC3_CHMODE_STEREO) {
                frame_bits++; /* rematstr */
                if (!blk)
                    frame_bits += 4;
            }
            frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
            if (s->lfe_on)
                frame_bits++; /* lfeexpstr */
            frame_bits++; /* baie */
            frame_bits++; /* snr */
            frame_bits += 2; /* delta / skip */
        }
        frame_bits++; /* cplinu for block 0 */
        /* bit alloc info */
        /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
        /* csnroffset[6] */
        /* (fsnoffset[4] + fgaincod[4]) * c */
        frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
    
        /* auxdatae, crcrsv */
        frame_bits += 2;
    
        /* CRC */
        frame_bits += 16;
    
        s->frame_bits_fixed = frame_bits;
    }
    
    
    
    /**
     * Initialize bit allocation.
     * Set default parameter codes and calculate parameter values.
     */
    static void bit_alloc_init(AC3EncodeContext *s)
    {
        int ch;
    
        /* init default parameters */
        s->slow_decay_code = 2;
        s->fast_decay_code = 1;
        s->slow_gain_code  = 1;
    
        s->db_per_bit_code = 3;
    
        s->floor_code      = 4;
        for (ch = 0; ch < s->channels; ch++)
            s->fast_gain_code[ch] = 4;
    
        /* initial snr offset */
        s->coarse_snr_offset = 40;
    
        /* compute real values */
        /* currently none of these values change during encoding, so we can just
           set them once at initialization */
        s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
        s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
        s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
        s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
        s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];
    
    /**
     * Count the bits used to encode the frame, minus exponents and mantissas.
    
     * Bits based on fixed parameters have already been counted, so now we just
     * have to add the bits based on parameters that change during encoding.
    
    static void count_frame_bits(AC3EncodeContext *s)
    
    
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
            uint8_t *exp_strategy = s->blocks[blk].exp_strategy;
    
            for (ch = 0; ch < s->fbw_channels; ch++) {
    
                    frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
            }
        }
    
        s->frame_bits = s->frame_bits_fixed + frame_bits;
    
    /**
     * Calculate the number of bits needed to encode a set of mantissas.
     */
    
    static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        bits = 0;
    
        for (i = 0; i < nb_coefs; i++) {
    
            if (b <= 4) {
                // bap=1 to bap=4 will be counted in compute_mantissa_size_final
                mant_cnt[b]++;
            } else if (b <= 13) {
                // bap=5 to bap=13 use (bap-1) bits
    
            } else {
                // bap=14 uses 14 bits and bap=15 uses 16 bits
                bits += (b == 14) ? 14 : 16;
    
    /**
     * Finalize the mantissa bit count by adding in the grouped mantissas.
     */
    static int compute_mantissa_size_final(int mant_cnt[5])
    {
        // bap=1 : 3 mantissas in 5 bits
        int bits = (mant_cnt[1] / 3) * 5;
        // bap=2 : 3 mantissas in 7 bits
        // bap=4 : 2 mantissas in 7 bits
        bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7;
        // bap=3 : each mantissa is 3 bits
        bits += mant_cnt[3] * 3;
        return bits;
    }
    
    
    
    /**
     * Calculate masking curve based on the final exponents.
     * Also calculate the power spectral densities to use in future calculations.
     */
    
    static void bit_alloc_masking(AC3EncodeContext *s)
    
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
            for (ch = 0; ch < s->channels; ch++) {
    
                /* We only need psd and mask for calculating bap.
                   Since we currently do not calculate bap when exponent
                   strategy is EXP_REUSE we do not need to calculate psd or mask. */
                if (block->exp_strategy[ch] != EXP_REUSE) {
    
                    ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0,
    
                                              block->psd[ch], block->band_psd[ch]);
                    ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
    
                                               ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
    
                                               DBA_NONE, 0, NULL, NULL, NULL,
    
    /**
     * Ensure that bap for each block and channel point to the current bap_buffer.
     * They may have been switched during the bit allocation search.
     */
    static void reset_block_bap(AC3EncodeContext *s)
    {
        int blk, ch;
        if (s->blocks[0].bap[0] == s->bap_buffer)
            return;
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            for (ch = 0; ch < s->channels; ch++) {
                s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
            }
        }
    }
    
    
    
    /**
     * Run the bit allocation with a given SNR offset.
     * This calculates the bit allocation pointers that will be used to determine
     * the quantization of each mantissa.
    
     * @return the number of bits needed for mantissas if the given SNR offset is
     *         is used.
    
    static int bit_alloc(AC3EncodeContext *s, int snr_offset)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
    
    
        snr_offset = (snr_offset - 240) << 2;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        reset_block_bap(s);
    
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
            // initialize grouped mantissa counts. these are set so that they are
            // padded to the next whole group size when bits are counted in
            // compute_mantissa_size_final
            mant_cnt[0] = mant_cnt[3] = 0;
            mant_cnt[1] = mant_cnt[2] = 2;
            mant_cnt[4] = 1;
    
            for (ch = 0; ch < s->channels; ch++) {
    
                /* Currently the only bit allocation parameters which vary across
                   blocks within a frame are the exponent values.  We can take
                   advantage of that by reusing the bit allocation pointers
                   whenever we reuse exponents. */
                if (block->exp_strategy[ch] == EXP_REUSE) {
                    memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS);
                } else {
    
                    ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
                                              s->nb_coefs[ch], snr_offset,
                                              s->bit_alloc.floor, ff_ac3_bap_tab,
                                              block->bap[ch]);
    
                mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            }
    
            mantissa_bits += compute_mantissa_size_final(mant_cnt);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
    
     * Constant bitrate bit allocation search.
     * Find the largest SNR offset that will allow data to fit in the frame.
    
    static int cbr_bit_allocation(AC3EncodeContext *s)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
    
        snr_offset = s->coarse_snr_offset << 4;
    
        /* if previous frame SNR offset was 1023, check if current frame can also
           use SNR offset of 1023. if so, skip the search. */
        if ((snr_offset | s->fine_snr_offset[0]) == 1023) {
            if (bit_alloc(s, 1023) <= bits_left)
                return 0;
        }
    
    
               bit_alloc(s, snr_offset) > bits_left) {
    
        if (snr_offset < 0)
    
            return AVERROR(EINVAL);
    
        FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
    
        for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
    
            while (snr_offset + snr_incr <= 1023 &&
    
                   bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
                snr_offset += snr_incr;
                FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
            }
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
    
        FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
        reset_block_bap(s);
    
        s->coarse_snr_offset = snr_offset >> 4;
    
        for (ch = 0; ch < s->channels; ch++)
    
            s->fine_snr_offset[ch] = snr_offset & 0xF;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        return 0;
    }
    
    
    /**
     * Downgrade exponent strategies to reduce the bits used by the exponents.
     * This is a fallback for when bit allocation fails with the normal exponent
     * strategies.  Each time this function is run it only downgrades the
     * strategy in 1 channel of 1 block.
     * @return non-zero if downgrade was unsuccessful
     */
    static int downgrade_exponents(AC3EncodeContext *s)
    {
        int ch, blk;
    
        for (ch = 0; ch < s->fbw_channels; ch++) {
            for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
                if (s->blocks[blk].exp_strategy[ch] == EXP_D15) {
                    s->blocks[blk].exp_strategy[ch] = EXP_D25;
                    return 0;
                }
            }
        }
        for (ch = 0; ch < s->fbw_channels; ch++) {
            for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
                if (s->blocks[blk].exp_strategy[ch] == EXP_D25) {
                    s->blocks[blk].exp_strategy[ch] = EXP_D45;
                    return 0;
                }
            }
        }
        for (ch = 0; ch < s->fbw_channels; ch++) {
            /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if
               the block number > 0 */
            for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) {
                if (s->blocks[blk].exp_strategy[ch] > EXP_REUSE) {
                    s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
                    return 0;
                }
            }
        }
        return -1;
    }
    
    
    /**
     * Reduce the bandwidth to reduce the number of bits used for a given SNR offset.
     * This is a second fallback for when bit allocation still fails after exponents
     * have been downgraded.
     * @return non-zero if bandwidth reduction was unsuccessful
     */
    static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code)
    {
        int ch;
    
        if (s->bandwidth_code[0] > min_bw_code) {
            for (ch = 0; ch < s->fbw_channels; ch++) {
                s->bandwidth_code[ch]--;
                s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73;
            }
            return 0;
        }
        return -1;
    }
    
    
    
    /**
     * Perform bit allocation search.
     * Finds the SNR offset value that maximizes quality and fits in the specified
     * frame size.  Output is the SNR offset and a set of bit allocation pointers
     * used to quantize the mantissas.
     */
    static int compute_bit_allocation(AC3EncodeContext *s)
    {
    
        count_frame_bits(s);
    
        bit_alloc_masking(s);
    
    
        ret = cbr_bit_allocation(s);
        while (ret) {
            /* fallback 1: downgrade exponents */
            if (!downgrade_exponents(s)) {
                extract_exponents(s);
                encode_exponents(s);
                group_exponents(s);
                ret = compute_bit_allocation(s);
                continue;
            }
    
            /* fallback 2: reduce bandwidth */
            /* only do this if the user has not specified a specific cutoff
               frequency */
            if (!s->cutoff && !reduce_bandwidth(s, 0)) {
                process_exponents(s);
                ret = compute_bit_allocation(s);
                continue;
            }
    
            /* fallbacks were not enough... */
            break;
        }
    
        return ret;
    
    /**
     * Symmetric quantization on 'levels' levels.
     */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    static inline int sym_quant(int c, int e, int levels)
    {
        int v;
    
        if (c >= 0) {
    
            v = (levels * (c << e)) >> 24;
            v = (v + 1) >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            v = (levels >> 1) + v;
        } else {
    
            v = (levels * ((-c) << e)) >> 24;
            v = (v + 1) >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            v = (levels >> 1) - v;
        }
    
        assert(v >= 0 && v < levels);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        return v;
    }
    
    
    /**
     * Asymmetric quantization on 2^qbits levels.