Skip to content
Snippets Groups Projects
ac3enc.c 56.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • Fabrice Bellard's avatar
    Fabrice Bellard committed
    /*
    
     * Copyright (c) 2000 Fabrice Bellard
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
    
     * version 2.1 of the License, or (at your option) any later version.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * FFmpeg is distributed in the hope that it will be useful,
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
    
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * You should have received a copy of the GNU Lesser General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     */
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
    
    /**
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
     */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    //#define DEBUG
    
    #include "libavcore/audioconvert.h"
    
    #include "libavutil/crc.h"
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    #include "avcodec.h"
    
    #include "ac3.h"
    
    #include "audioconvert.h"
    
    #define MDCT_NBITS 9
    #define MDCT_SAMPLES (1 << MDCT_NBITS)
    
    
    /** Maximum number of exponent groups. +1 for separate DC exponent. */
    #define AC3_MAX_EXP_GROUPS 85
    
    
    /** Scale a float value by 2^bits and convert to an integer. */
    
    Justin Ruggles's avatar
    Justin Ruggles committed
    #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
    
    
    /** Scale a float value by 2^15, convert to an integer, and clip to int16_t range. */
    
    #define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15))
    
    
    /**
     * Compex number.
     * Used in fixed-point MDCT calculation.
     */
    
    typedef struct IComplex {
        int16_t re,im;
    } IComplex;
    
    
    typedef struct AC3MDCTContext {
        AVCodecContext *avctx;                  ///< parent context for av_log()
        int16_t *rot_tmp;                       ///< temp buffer for pre-rotated samples
        IComplex *cplx_tmp;                     ///< temp buffer for complex pre-rotated samples
    } AC3MDCTContext;
    
    
    /**
     * Data for a single audio block.
     */
    typedef struct AC3Block {
    
        uint8_t  **bap;                             ///< bit allocation pointers (bap)
        int32_t  **mdct_coef;                       ///< MDCT coefficients
        uint8_t  **exp;                             ///< original exponents
        uint8_t  **encoded_exp;                     ///< encoded exponents
        uint8_t  **grouped_exp;                     ///< grouped exponents
        int16_t  **psd;                             ///< psd per frequency bin
        int16_t  **band_psd;                        ///< psd per critical band
        int16_t  **mask;                            ///< masking curve
        uint16_t **qmant;                           ///< quantized mantissas
        uint8_t  num_exp_groups[AC3_MAX_CHANNELS];  ///< number of exponent groups
        uint8_t  exp_strategy[AC3_MAX_CHANNELS];    ///< exponent strategies
        int8_t   exp_shift[AC3_MAX_CHANNELS];       ///< exponent shift values
    
    typedef struct AC3EncodeContext {
    
        PutBitContext pb;                       ///< bitstream writer context
    
        AC3MDCTContext mdct;                    ///< MDCT context
    
        AC3Block blocks[AC3_MAX_BLOCKS];        ///< per-block info
    
    
        int bitstream_id;                       ///< bitstream id                           (bsid)
        int bitstream_mode;                     ///< bitstream mode                         (bsmod)
    
        int bit_rate;                           ///< target bit rate, in bits-per-second
        int sample_rate;                        ///< sampling frequency, in Hz
    
        int frame_size_min;                     ///< minimum frame size in case rounding is necessary
    
        int frame_size;                         ///< current frame size in bytes
    
        int frame_size_code;                    ///< frame size code                        (frmsizecod)
        int bits_written;                       ///< bit count    (used to avg. bitrate)
        int samples_written;                    ///< sample count (used to avg. bitrate)
    
        int fbw_channels;                       ///< number of full-bandwidth channels      (nfchans)
        int channels;                           ///< total number of channels               (nchans)
        int lfe_on;                             ///< indicates if there is an LFE channel   (lfeon)
        int lfe_channel;                        ///< channel index of the LFE channel
        int channel_mode;                       ///< channel mode                           (acmod)
        const uint8_t *channel_map;             ///< channel map used to reorder channels
    
        int bandwidth_code[AC3_MAX_CHANNELS];   ///< bandwidth code (0 to 60)               (chbwcod)
    
        int nb_coefs[AC3_MAX_CHANNELS];
    
        /* bitrate allocation control */
    
        int slow_gain_code;                     ///< slow gain code                         (sgaincod)
        int slow_decay_code;                    ///< slow decay code                        (sdcycod)
        int fast_decay_code;                    ///< fast decay code                        (fdcycod)
        int db_per_bit_code;                    ///< dB/bit code                            (dbpbcod)
        int floor_code;                         ///< floor code                             (floorcod)
        AC3BitAllocParameters bit_alloc;        ///< bit allocation parameters
        int coarse_snr_offset;                  ///< coarse SNR offsets                     (csnroffst)
        int fast_gain_code[AC3_MAX_CHANNELS];   ///< fast gain codes (signal-to-mask ratio) (fgaincod)
        int fine_snr_offset[AC3_MAX_CHANNELS];  ///< fine SNR offsets                       (fsnroffst)
    
        int frame_bits;                         ///< all frame bits except exponents and mantissas
        int exponent_bits;                      ///< number of bits used for exponents
    
        /* mantissa encoding */
    
        int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
    
        uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
    
        int16_t **planar_samples;
    
        uint8_t *bap_buffer;
        uint8_t *bap1_buffer;
    
        int32_t *mdct_coef_buffer;
        uint8_t *exp_buffer;
        uint8_t *encoded_exp_buffer;
        uint8_t *grouped_exp_buffer;
        int16_t *psd_buffer;
        int16_t *band_psd_buffer;
        int16_t *mask_buffer;
        uint16_t *qmant_buffer;
    
    
        DECLARE_ALIGNED(16, int16_t, windowed_samples)[AC3_WINDOW_SIZE];
    
    } AC3EncodeContext;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
    static int16_t costab[64];
    static int16_t sintab[64];
    static int16_t xcos1[128];
    static int16_t xsin1[128];
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
    /**
     * Adjust the frame size to make the average bit rate match the target bit rate.
     * This is only needed for 11025, 22050, and 44100 sample rates.
     */
    static void adjust_frame_size(AC3EncodeContext *s)
    {
        while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
            s->bits_written    -= s->bit_rate;
            s->samples_written -= s->sample_rate;
        }
    
        s->frame_size = s->frame_size_min +
                        2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
    
        s->bits_written    += s->frame_size * 8;
        s->samples_written += AC3_FRAME_SIZE;
    }
    
    
    
    /**
     * Deinterleave input samples.
     * Channels are reordered from FFmpeg's default order to AC-3 order.
     */
    static void deinterleave_input_samples(AC3EncodeContext *s,
    
    {
        int ch, i;
    
        /* deinterleave and remap input samples */
        for (ch = 0; ch < s->channels; ch++) {
            const int16_t *sptr;
            int sinc;
    
            /* copy last 256 samples of previous frame to the start of the current frame */
    
            memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
    
                   AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
    
    
            /* deinterleave */
            sinc = s->channels;
            sptr = samples + s->channel_map[ch];
            for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
    
    /**
     * Finalize MDCT and free allocated memory.
     */
    static av_cold void mdct_end(AC3MDCTContext *mdct)
    {
        av_freep(&mdct->rot_tmp);
        av_freep(&mdct->cplx_tmp);
    }
    
    
    
    
    /**
     * Initialize FFT tables.
     * @param ln log2(FFT size)
     */
    
    static av_cold void fft_init(int ln)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
        int i, n, n2;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        float alpha;
    
    
        n  = 1 << ln;
        n2 = n >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        for (i = 0; i < n2; i++) {
            alpha     = 2.0 * M_PI * i / n;
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            costab[i] = FIX15(cos(alpha));
            sintab[i] = FIX15(sin(alpha));
    
    /**
     * Initialize MDCT tables.
     * @param nbits log2(MDCT size)
     */
    
    static av_cold int mdct_init(AC3MDCTContext *mdct, int nbits)
    
        int i, n, n4;
    
        n  = 1 << nbits;
        n4 = n >> 2;
    
        FF_ALLOC_OR_GOTO(mdct->avctx, mdct->rot_tmp,  n  * sizeof(*mdct->rot_tmp),
                         mdct_alloc_fail);
        FF_ALLOC_OR_GOTO(mdct->avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp),
                         mdct_alloc_fail);
    
    
        for (i = 0; i < n4; i++) {
    
            float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
    
    Justin Ruggles's avatar
    Justin Ruggles committed
            xcos1[i] = FIX15(-cos(alpha));
            xsin1[i] = FIX15(-sin(alpha));
    
    
        return 0;
    mdct_alloc_fail:
        return AVERROR(ENOMEM);
    
    #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
    {                                                       \
      int ax, ay, bx, by;                                   \
      bx  = pre1;                                           \
      by  = pim1;                                           \
      ax  = qre1;                                           \
      ay  = qim1;                                           \
      pre = (bx + ax) >> 1;                                 \
      pim = (by + ay) >> 1;                                 \
      qre = (bx - ax) >> 1;                                 \
      qim = (by - ay) >> 1;                                 \
    
    #define CMUL(pre, pim, are, aim, bre, bim)              \
    {                                                       \
       pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;     \
       pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;     \
    
    /**
     * Calculate a 2^n point complex FFT on 2^ln points.
     * @param z  complex input/output samples
     * @param ln log2(FFT size)
     */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    static void fft(IComplex *z, int ln)
    {
    
        int j, l, np, np2;
        int nblocks, nloops;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        register IComplex *p,*q;
        int tmp_re, tmp_im;
    
        np = 1 << ln;
    
        /* reverse */
    
        for (j = 0; j < np; j++) {
    
            int k = av_reverse[j] >> (8 - ln);
    
            if (k < j)
                FFSWAP(IComplex, z[k], z[j]);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
    
        /* pass 0 */
    
    
        p = &z[0];
        j = np >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        do {
    
            BF(p[0].re, p[0].im, p[1].re, p[1].im,
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
               p[0].re, p[0].im, p[1].re, p[1].im);
    
            p += 2;
        } while (--j);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* pass 1 */
    
    
        p = &z[0];
        j = np >> 2;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        do {
    
            BF(p[0].re, p[0].im, p[2].re,  p[2].im,
               p[0].re, p[0].im, p[2].re,  p[2].im);
            BF(p[1].re, p[1].im, p[3].re,  p[3].im,
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
               p[1].re, p[1].im, p[3].im, -p[3].re);
            p+=4;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* pass 2 .. ln-1 */
    
        nblocks = np >> 3;
    
        nloops  =  1 << 2;
        np2     = np >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        do {
            p = z;
            q = z + nloops;
    
            for (j = 0; j < nblocks; j++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                BF(p->re, p->im, q->re, q->im,
                   p->re, p->im, q->re, q->im);
                p++;
                q++;
                for(l = nblocks; l < np2; l += nblocks) {
                    CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
    
                    BF(p->re, p->im, q->re,  q->im,
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                       p->re, p->im, tmp_re, tmp_im);
                    p++;
                    q++;
                }
                p += nloops;
                q += nloops;
            }
            nblocks = nblocks >> 1;
    
            nloops  = nloops  << 1;
        } while (nblocks);
    
    /**
     * Calculate a 512-point MDCT
     * @param out 256 output frequency coefficients
     * @param in  512 windowed input audio samples
     */
    
    static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
        int16_t *rot = mdct->rot_tmp;
        IComplex *x  = mdct->cplx_tmp;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* shift to simplify computations */
    
        for (i = 0; i < MDCT_SAMPLES/4; i++)
    
            rot[i] = -in[i + 3*MDCT_SAMPLES/4];
    
        memcpy(&rot[MDCT_SAMPLES/4], &in[0], 3*MDCT_SAMPLES/4*sizeof(*in));
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* pre rotation */
    
        for (i = 0; i < MDCT_SAMPLES/4; i++) {
            re =  ((int)rot[               2*i] - (int)rot[MDCT_SAMPLES  -1-2*i]) >> 1;
    
            im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
        }
    
        fft(x, MDCT_NBITS - 2);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* post rotation */
    
        for (i = 0; i < MDCT_SAMPLES/4; i++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            re = x[i].re;
            im = x[i].im;
    
            CMUL(out[MDCT_SAMPLES/2-1-2*i], out[2*i], re, im, xsin1[i], xcos1[i]);
    
    /**
     * Apply KBD window to input samples prior to MDCT.
     */
    static void apply_window(int16_t *output, const int16_t *input,
                             const int16_t *window, int n)
    {
        int i;
        int n2 = n >> 1;
    
        for (i = 0; i < n2; i++) {
            output[i]     = MUL16(input[i],     window[i]) >> 15;
            output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
        }
    }
    
    
    
    /**
     * Calculate the log2() of the maximum absolute value in an array.
     * @param tab input array
     * @param n   number of values in the array
     * @return    log2(max(abs(tab[])))
     */
    
    static int log2_tab(int16_t *tab, int n)
    {
        int i, v;
    
        v = 0;
        for (i = 0; i < n; i++)
            v |= abs(tab[i]);
    
        return av_log2(v);
    }
    
    
    /**
     * Left-shift each value in an array by a specified amount.
     * @param tab    input array
     * @param n      number of values in the array
     * @param lshift left shift amount. a negative value means right shift.
     */
    
    static void lshift_tab(int16_t *tab, int n, int lshift)
    {
        int i;
    
        if (lshift > 0) {
    
            for (i = 0; i < n; i++)
    
                tab[i] <<= lshift;
        } else if (lshift < 0) {
            lshift = -lshift;
            for (i = 0; i < n; i++)
                tab[i] >>= lshift;
        }
    }
    
    
    /**
     * Normalize the input samples to use the maximum available precision.
     * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
     * match the 24-bit internal precision for MDCT coefficients.
     *
     * @return exponent shift
     */
    
    static int normalize_samples(AC3EncodeContext *s)
    
        int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
    
        lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
    
        return v - 9;
    }
    
    
    /**
     * Apply the MDCT to input samples to generate frequency coefficients.
     * This applies the KBD window and normalizes the input to reduce precision
     * loss due to fixed-point calculations.
     */
    
    static void apply_mdct(AC3EncodeContext *s)
    
    {
        int blk, ch;
    
        for (ch = 0; ch < s->channels; ch++) {
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
                const int16_t *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
    
                apply_window(s->windowed_samples, input_samples, ff_ac3_window, AC3_WINDOW_SIZE);
    
                block->exp_shift[ch] = normalize_samples(s);
    
                mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples);
    
    /**
     * Extract exponents from the MDCT coefficients.
     * This takes into account the normalization that was done to the input samples
     * by adjusting the exponents by the exponent shift values.
     */
    
    static void extract_exponents(AC3EncodeContext *s)
    
    {
        int blk, ch, i;
    
        for (ch = 0; ch < s->channels; ch++) {
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
                for (i = 0; i < AC3_MAX_COEFS; i++) {
                    int e;
    
                    int v = abs(block->mdct_coef[ch][i]);
    
                        e = 23 - av_log2(v) + block->exp_shift[ch];
    
    /**
     * Exponent Difference Threshold.
     * New exponents are sent if their SAD exceed this number.
     */
    
    #define EXP_DIFF_THRESHOLD 1000
    
    
    /**
     * Calculate exponent strategies for all blocks in a single channel.
     */
    
    static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy, uint8_t **exp)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        int exp_diff;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* estimate if the exponent variation & decide if they should be
           reused in the next frame */
    
        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
    
            exp_diff = s->dsp.sad[0](NULL, exp[blk], exp[blk-1], 16, 16);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            if (exp_diff > EXP_DIFF_THRESHOLD)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            else
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* now select the encoding strategy type : if exponents are often
           recoded, we use a coarse encoding */
    
        blk = 0;
        while (blk < AC3_MAX_BLOCKS) {
            blk1 = blk + 1;
    
            while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
    
            case 1:  exp_strategy[blk] = EXP_D45; break;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            case 2:
    
            case 3:  exp_strategy[blk] = EXP_D25; break;
            default: exp_strategy[blk] = EXP_D15; break;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            }
    
    /**
     * Calculate exponent strategies for all channels.
    
     * Array arrangement is reversed to simplify the per-channel calculation.
    
    static void compute_exp_strategy(AC3EncodeContext *s)
    
        uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
        uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
        int ch, blk;
    
        for (ch = 0; ch < s->fbw_channels; ch++) {
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
                exp1[ch][blk]     = s->blocks[blk].exp[ch];
                exp_str1[ch][blk] = s->blocks[blk].exp_strategy[ch];
    
            compute_exp_strategy_ch(s, exp_str1[ch], exp1[ch]);
    
    
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
    
                s->blocks[blk].exp_strategy[ch] = exp_str1[ch][blk];
    
            s->blocks[0].exp_strategy[ch] = EXP_D15;
    
            for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
    
                s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
    
    /**
     * Set each encoded exponent in a block to the minimum of itself and the
     * exponent in the same frequency bin of a following block.
     * exp[i] = min(exp[i], exp1[i]
     */
    
    static void exponent_min(uint8_t *exp, uint8_t *exp1, int n)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
        int i;
    
        for (i = 0; i < n; i++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            if (exp1[i] < exp[i])
                exp[i] = exp1[i];
        }
    }
    
    /**
     * Update the exponents so that they are the ones the decoder will decode.
     */
    
    static void encode_exponents_blk_ch(uint8_t *encoded_exp, uint8_t *exp,
    
                                        int nb_exps, int exp_strategy,
                                        uint8_t *num_exp_groups)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
        int group_size, nb_groups, i, j, k, exp_min;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        group_size = exp_strategy + (exp_strategy == EXP_D45);
    
        *num_exp_groups = (nb_exps + (group_size * 3) - 4) / (3 * group_size);
        nb_groups = *num_exp_groups * 3;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* for each group, compute the minimum exponent */
        exp1[0] = exp[0]; /* DC exponent is handled separately */
        k = 1;
    
        for (i = 1; i <= nb_groups; i++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            exp_min = exp[k];
            assert(exp_min >= 0 && exp_min <= 24);
    
            for (j = 1; j < group_size; j++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                if (exp[k+j] < exp_min)
                    exp_min = exp[k+j];
            }
            exp1[i] = exp_min;
            k += group_size;
        }
    
        /* constraint for DC exponent */
        if (exp1[0] > 15)
            exp1[0] = 15;
    
    
        /* decrease the delta between each groups to within 2 so that they can be
           differentially encoded */
        for (i = 1; i <= nb_groups; i++)
    
            exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
    
        for (i = nb_groups-1; i >= 0; i--)
    
            exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* now we have the exponent values the decoder will see */
        encoded_exp[0] = exp1[0];
        k = 1;
    
        for (i = 1; i <= nb_groups; i++) {
            for (j = 0; j < group_size; j++)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                encoded_exp[k+j] = exp1[i];
            k += group_size;
        }
    }
    
    
    /**
     * Encode exponents from original extracted form to what the decoder will see.
     * This copies and groups exponents based on exponent strategy and reduces
     * deltas between adjacent exponent groups so that they can be differentially
     * encoded.
     */
    
    static void encode_exponents(AC3EncodeContext *s)
    
    {
        int blk, blk1, blk2, ch;
    
    
        for (ch = 0; ch < s->channels; ch++) {
            blk = 0;
    
            while (blk < AC3_MAX_BLOCKS) {
                blk1 = blk + 1;
    
                /* for the EXP_REUSE case we select the min of the exponents */
    
                while (blk1 < AC3_MAX_BLOCKS && block1->exp_strategy[ch] == EXP_REUSE) {
                    exponent_min(block->exp[ch], block1->exp[ch], s->nb_coefs[ch]);
    
                encode_exponents_blk_ch(block->encoded_exp[ch],
                                        block->exp[ch], s->nb_coefs[ch],
                                        block->exp_strategy[ch],
                                        &block->num_exp_groups[ch]);
    
                /* copy encoded exponents for reuse case */
    
                block2 = block + 1;
                for (blk2 = blk+1; blk2 < blk1; blk2++, block2++) {
                    memcpy(block2->encoded_exp[ch], block->encoded_exp[ch],
    
                           s->nb_coefs[ch] * sizeof(uint8_t));
                }
                blk = blk1;
    
    }
    
    
    /**
     * Group exponents.
     * 3 delta-encoded exponents are in each 7-bit group. The number of groups
     * varies depending on exponent strategy and bandwidth.
     */
    
    static void group_exponents(AC3EncodeContext *s)
    
    {
        int blk, ch, i;
        int group_size, bit_count;
        uint8_t *p;
        int delta0, delta1, delta2;
        int exp0, exp1;
    
        bit_count = 0;
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
            for (ch = 0; ch < s->channels; ch++) {
    
                if (block->exp_strategy[ch] == EXP_REUSE) {
                    block->num_exp_groups[ch] = 0;
    
                group_size = block->exp_strategy[ch] + (block->exp_strategy[ch] == EXP_D45);
                bit_count += 4 + (block->num_exp_groups[ch] * 7);
                p = block->encoded_exp[ch];
    
    
                /* remaining exponents are delta encoded */
    
                for (i = 1; i <= block->num_exp_groups[ch]; i++) {
    
                    /* merge three delta in one code */
                    exp0   = exp1;
                    exp1   = p[0];
                    p     += group_size;
                    delta0 = exp1 - exp0 + 2;
    
                    exp0   = exp1;
                    exp1   = p[0];
                    p     += group_size;
                    delta1 = exp1 - exp0 + 2;
    
                    exp0   = exp1;
                    exp1   = p[0];
                    p     += group_size;
                    delta2 = exp1 - exp0 + 2;
    
    
                    block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
    
        s->exponent_bits = bit_count;
    
    }
    
    
    /**
     * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
     * Extract exponents from MDCT coefficients, calculate exponent strategies,
     * and encode final exponents.
     */
    
    static void process_exponents(AC3EncodeContext *s)
    
    /**
     * Initialize bit allocation.
     * Set default parameter codes and calculate parameter values.
     */
    static void bit_alloc_init(AC3EncodeContext *s)
    {
        int ch;
    
        /* init default parameters */
        s->slow_decay_code = 2;
        s->fast_decay_code = 1;
        s->slow_gain_code  = 1;
        s->db_per_bit_code = 2;
        s->floor_code      = 4;
        for (ch = 0; ch < s->channels; ch++)
            s->fast_gain_code[ch] = 4;
    
        /* initial snr offset */
        s->coarse_snr_offset = 40;
    
        /* compute real values */
        /* currently none of these values change during encoding, so we can just
           set them once at initialization */
        s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
        s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
        s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
        s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
        s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];
    }
    
    
    
    /**
     * Count the bits used to encode the frame, minus exponents and mantissas.
     */
    
    static void count_frame_bits(AC3EncodeContext *s)
    
    {
        static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
        int blk, ch;
        int frame_bits;
    
        /* header size */
        frame_bits = 65;
        frame_bits += frame_bits_inc[s->channel_mode];
    
        /* audio blocks */
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
            if (s->channel_mode == AC3_CHMODE_STEREO) {
                frame_bits++; /* rematstr */
                if (!blk)
                    frame_bits += 4;
            }
            frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
            if (s->lfe_on)
                frame_bits++; /* lfeexpstr */
            for (ch = 0; ch < s->fbw_channels; ch++) {
    
                if (s->blocks[blk].exp_strategy[ch] != EXP_REUSE)
    
                    frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
            }
            frame_bits++; /* baie */
            frame_bits++; /* snr */
            frame_bits += 2; /* delta / skip */
        }
        frame_bits++; /* cplinu for block 0 */
        /* bit alloc info */
        /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
        /* csnroffset[6] */
        /* (fsnoffset[4] + fgaincod[4]) * c */
        frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
    
        /* auxdatae, crcrsv */
        frame_bits += 2;
    
        /* CRC */
        frame_bits += 16;
    
    
        s->frame_bits = frame_bits;
    
    /**
     * Calculate the number of bits needed to encode a set of mantissas.
     */
    
    static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *bap, int nb_coefs)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        bits = 0;
    
        for (i = 0; i < nb_coefs; i++) {
    
            b = bap[i];
            switch (b) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            case 0:
    
                /* bap=0 mantissas are not encoded */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                break;
            case 1:
    
                /* 3 mantissas in 5 bits */
    
                if (s->mant1_cnt == 0)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                    bits += 5;
                if (++s->mant1_cnt == 3)
                    s->mant1_cnt = 0;
                break;
            case 2:
    
                /* 3 mantissas in 7 bits */
    
                if (s->mant2_cnt == 0)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                    bits += 7;
                if (++s->mant2_cnt == 3)
                    s->mant2_cnt = 0;
                break;
            case 3:
                bits += 3;
                break;
            case 4:
    
                /* 2 mantissas in 7 bits */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                if (s->mant4_cnt == 0)
                    bits += 7;
    
                if (++s->mant4_cnt == 2)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                    s->mant4_cnt = 0;
                break;
            case 14:
                bits += 14;
                break;
            case 15:
                bits += 16;
                break;
            default:
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                break;
            }
        }
        return bits;
    }
    
    
    
    /**
     * Calculate masking curve based on the final exponents.
     * Also calculate the power spectral densities to use in future calculations.
     */
    
    static void bit_alloc_masking(AC3EncodeContext *s)
    
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
            for (ch = 0; ch < s->channels; ch++) {
    
                if (block->exp_strategy[ch] == EXP_REUSE) {
                    AC3Block *block1 = &s->blocks[blk-1];
                    memcpy(block->psd[ch],  block1->psd[ch],  AC3_MAX_COEFS*sizeof(block->psd[0][0]));
                    memcpy(block->mask[ch], block1->mask[ch], AC3_CRITICAL_BANDS*sizeof(block->mask[0][0]));
    
                    ff_ac3_bit_alloc_calc_psd(block->encoded_exp[ch], 0,
    
                                              block->psd[ch], block->band_psd[ch]);
                    ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
    
                                               ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
    
                                               DBA_NONE, 0, NULL, NULL, NULL,
    
    /**
     * Ensure that bap for each block and channel point to the current bap_buffer.
     * They may have been switched during the bit allocation search.
     */
    static void reset_block_bap(AC3EncodeContext *s)
    {
        int blk, ch;
        if (s->blocks[0].bap[0] == s->bap_buffer)
            return;
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            for (ch = 0; ch < s->channels; ch++) {
                s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
            }
        }
    }
    
    
    
    /**
     * Run the bit allocation with a given SNR offset.
     * This calculates the bit allocation pointers that will be used to determine
     * the quantization of each mantissa.
    
     * @return the number of bits needed for mantissas if the given SNR offset is
     *         is used.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    static int bit_alloc(AC3EncodeContext *s,
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Justin Ruggles's avatar
    Justin Ruggles committed
    
    
        snr_offset = (snr_offset - 240) << 2;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        reset_block_bap(s);
    
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            s->mant1_cnt = 0;
            s->mant2_cnt = 0;
            s->mant4_cnt = 0;
    
            for (ch = 0; ch < s->channels; ch++) {
    
                ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
    
                                          s->nb_coefs[ch], snr_offset,
    
                                          s->bit_alloc.floor, ff_ac3_bap_tab,
    
                                          block->bap[ch]);
                mantissa_bits += compute_mantissa_size(s, block->bap[ch], s->nb_coefs[ch]);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            }
        }
    
     * Constant bitrate bit allocation search.
     * Find the largest SNR offset that will allow data to fit in the frame.
    
    static int cbr_bit_allocation(AC3EncodeContext *s)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
    
        bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
    
        snr_offset = s->coarse_snr_offset << 4;
    
               bit_alloc(s, snr_offset) > bits_left) {