Skip to content
Snippets Groups Projects
ac3enc.c 40.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Fabrice Bellard's avatar
    Fabrice Bellard committed
    /*
     * The simplest AC3 encoder
    
     * Copyright (c) 2000 Fabrice Bellard.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * This library is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * This library is distributed in the hope that it will be useful,
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
    
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     *
    
     * You should have received a copy of the GNU Lesser General Public
     * License along with this library; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
     */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    //#define DEBUG
    //#define DEBUG_BITALLOC
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    #include "avcodec.h"
    
    #include "ac3enc.h"
    #include "ac3tab.h"
    
    
    #define MDCT_NBITS 9
    #define N         (1 << MDCT_NBITS)
    #define NB_BLOCKS 6 /* number of PCM blocks inside an AC3 frame */
    
    /* new exponents are sent if their Norm 1 exceed this number */
    #define EXP_DIFF_THRESHOLD 1000
    
    /* exponent encoding strategy */
    #define EXP_REUSE 0
    #define EXP_NEW   1
    
    #define EXP_D15   1
    #define EXP_D25   2
    #define EXP_D45   3
    
    static void fft_init(int ln);
    static void ac3_crc_init(void);
    
    static inline INT16 fix15(float a)
    {
        int v;
        v = (int)(a * (float)(1 << 15));
        if (v < -32767)
            v = -32767;
        else if (v > 32767) 
            v = 32767;
        return v;
    }
    
    static inline int calc_lowcomp1(int a, int b0, int b1)
    {
        if ((b0 + 256) == b1) {
            a = 384 ;
        } else if (b0 > b1) { 
            a = a - 64;
            if (a < 0) a=0;
        }
        return a;
    }
    
    static inline int calc_lowcomp(int a, int b0, int b1, int bin)
    {
        if (bin < 7) {
            if ((b0 + 256) == b1) {
                a = 384 ;
            } else if (b0 > b1) { 
                a = a - 64;
                if (a < 0) a=0;
            }
        } else if (bin < 20) {
            if ((b0 + 256) == b1) {
                a = 320 ;
            } else if (b0 > b1) {
                a= a - 64;
                if (a < 0) a=0;
            }
        } else {
            a = a - 128;
            if (a < 0) a=0;
        }
        return a;
    }
    
    /* AC3 bit allocation. The algorithm is the one described in the AC3
       spec with some optimizations because of our simplified encoding
       assumptions. */
    void parametric_bit_allocation(AC3EncodeContext *s, UINT8 *bap,
                                   INT8 *exp, int start, int end,
    
                                   int snroffset, int fgain, int is_lfe)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
        int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin;
        int fastleak,slowleak,address,tmp;
        INT16 psd[256]; /* scaled exponents */
        INT16 bndpsd[50]; /* interpolated exponents */
        INT16 excite[50]; /* excitation */
        INT16 mask[50];   /* masking value */
    
        /* exponent mapping to PSD */
        for(bin=start;bin<end;bin++) {
            psd[bin]=(3072 - (exp[bin] << 7));
        }
    
        /* PSD integration */
        j=start;
        k=masktab[start];
        do {
            v=psd[j];
            j++;
            end1=bndtab[k+1];
            if (end1 > end) end1=end;
            for(i=j;i<end1;i++) {
                int c,adr;
                /* logadd */
                v1=psd[j];
                c=v-v1;
                if (c >= 0) {
                    adr=c >> 1;
                    if (adr > 255) adr=255;
                    v=v + latab[adr];
                } else {
                    adr=(-c) >> 1;
                    if (adr > 255) adr=255;
                    v=v1 + latab[adr];
                }
                j++;
            }
            bndpsd[k]=v;
            k++;
        } while (end > bndtab[k]);
    
        /* excitation function */
        bndstrt = masktab[start];
        bndend = masktab[end-1] + 1;
        
        lowcomp = 0;
        lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ;
        excite[0] = bndpsd[0] - fgain - lowcomp ;
        lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ;
        excite[1] = bndpsd[1] - fgain - lowcomp ;
        begin = 7 ;
        for (bin = 2; bin < 7; bin++) {
    
    	if (!(is_lfe && bin == 6))
    	    lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            fastleak = bndpsd[bin] - fgain ;
            slowleak = bndpsd[bin] - s->sgain ;
            excite[bin] = fastleak - lowcomp ;
    
    	if (!(is_lfe && bin == 6)) {
    	    if (bndpsd[bin] <= bndpsd[bin+1]) {
    		begin = bin + 1 ;
    		break ;
    	    }
    	}
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
        
        end1=bndend;
        if (end1 > 22) end1=22;
        
        for (bin = begin; bin < end1; bin++) {
    
    	if (!(is_lfe && bin == 6))
    	    lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            
            fastleak -= s->fdecay ;
            v = bndpsd[bin] - fgain;
            if (fastleak < v) fastleak = v;
            
            slowleak -= s->sdecay ;
            v = bndpsd[bin] - s->sgain;
            if (slowleak < v) slowleak = v;
            
            v=fastleak - lowcomp;
            if (slowleak > v) v=slowleak;
            
            excite[bin] = v;
        }
    
        for (bin = 22; bin < bndend; bin++) {
            fastleak -= s->fdecay ;
            v = bndpsd[bin] - fgain;
            if (fastleak < v) fastleak = v;
            slowleak -= s->sdecay ;
            v = bndpsd[bin] - s->sgain;
            if (slowleak < v) slowleak = v;
    
            v=fastleak;
            if (slowleak > v) v = slowleak;
            excite[bin] = v;
        }
    
        /* compute masking curve */
    
        for (bin = bndstrt; bin < bndend; bin++) {
            v1 = excite[bin];
            tmp = s->dbknee - bndpsd[bin];
            if (tmp > 0) {
                v1 += tmp >> 2;
            }
            v=hth[bin >> s->halfratecod][s->fscod];
            if (v1 > v) v=v1;
            mask[bin] = v;
        }
    
        /* compute bit allocation */
        
        i = start ;
        j = masktab[start] ;
        do {
            v=mask[j];
            v -= snroffset ;
            v -= s->floor ;
            if (v < 0) v = 0;
            v &= 0x1fe0 ;
            v += s->floor ;
    
            end1=bndtab[j] + bndsz[j];
            if (end1 > end) end1=end;
    
            for (k = i; k < end1; k++) {
                address = (psd[i] - v) >> 5 ;
                if (address < 0) address=0;
                else if (address > 63) address=63;
                bap[i] = baptab[address];
                i++;
            }
        } while (end > bndtab[j++]) ;
    }
    
    typedef struct IComplex {
        short re,im;
    } IComplex;
    
    static void fft_init(int ln)
    {
        int i, j, m, n;
        float alpha;
    
        n = 1 << ln;
    
        for(i=0;i<(n/2);i++) {
            alpha = 2 * M_PI * (float)i / (float)n;
            costab[i] = fix15(cos(alpha));
            sintab[i] = fix15(sin(alpha));
        }
    
        for(i=0;i<n;i++) {
            m=0;
            for(j=0;j<ln;j++) {
                m |= ((i >> j) & 1) << (ln-j-1);
            }
            fft_rev[i]=m;
        }
    }
    
    /* butter fly op */
    #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
    {\
      int ax, ay, bx, by;\
      bx=pre1;\
      by=pim1;\
      ax=qre1;\
      ay=qim1;\
      pre = (bx + ax) >> 1;\
      pim = (by + ay) >> 1;\
      qre = (bx - ax) >> 1;\
      qim = (by - ay) >> 1;\
    }
    
    #define MUL16(a,b) ((a) * (b))
    
    #define CMUL(pre, pim, are, aim, bre, bim) \
    {\
       pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
       pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
    }
    
    
    /* do a 2^n point complex fft on 2^ln points. */
    static void fft(IComplex *z, int ln)
    {
        int	j, l, np, np2;
        int	nblocks, nloops;
        register IComplex *p,*q;
        int tmp_re, tmp_im;
    
        np = 1 << ln;
    
        /* reverse */
        for(j=0;j<np;j++) {
            int k;
            IComplex tmp;
            k = fft_rev[j];
            if (k < j) {
                tmp = z[k];
                z[k] = z[j];
                z[j] = tmp;
            }
        }
    
        /* pass 0 */
    
        p=&z[0];
        j=(np >> 1);
        do {
            BF(p[0].re, p[0].im, p[1].re, p[1].im, 
               p[0].re, p[0].im, p[1].re, p[1].im);
            p+=2;
        } while (--j != 0);
    
        /* pass 1 */
    
        p=&z[0];
        j=np >> 2;
        do {
            BF(p[0].re, p[0].im, p[2].re, p[2].im, 
               p[0].re, p[0].im, p[2].re, p[2].im);
            BF(p[1].re, p[1].im, p[3].re, p[3].im, 
               p[1].re, p[1].im, p[3].im, -p[3].re);
            p+=4;
        } while (--j != 0);
    
        /* pass 2 .. ln-1 */
    
        nblocks = np >> 3;
        nloops = 1 << 2;
        np2 = np >> 1;
        do {
            p = z;
            q = z + nloops;
            for (j = 0; j < nblocks; ++j) {
    
                BF(p->re, p->im, q->re, q->im,
                   p->re, p->im, q->re, q->im);
                
                p++;
                q++;
                for(l = nblocks; l < np2; l += nblocks) {
                    CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
                    BF(p->re, p->im, q->re, q->im,
                       p->re, p->im, tmp_re, tmp_im);
                    p++;
                    q++;
                }
                p += nloops;
                q += nloops;
            }
            nblocks = nblocks >> 1;
            nloops = nloops << 1;
        } while (nblocks != 0);
    }
    
    /* do a 512 point mdct */
    static void mdct512(INT32 *out, INT16 *in)
    {
        int i, re, im, re1, im1;
        INT16 rot[N]; 
        IComplex x[N/4];
    
        /* shift to simplify computations */
        for(i=0;i<N/4;i++)
            rot[i] = -in[i + 3*N/4];
        for(i=N/4;i<N;i++)
            rot[i] = in[i - N/4];
            
        /* pre rotation */
        for(i=0;i<N/4;i++) {
            re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
            im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
            CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
        }
    
        fft(x, MDCT_NBITS - 2);
      
        /* post rotation */
        for(i=0;i<N/4;i++) {
            re = x[i].re;
            im = x[i].im;
            CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
            out[2*i] = im1;
            out[N/2-1-2*i] = re1;
        }
    }
    
    /* XXX: use another norm ? */
    static int calc_exp_diff(UINT8 *exp1, UINT8 *exp2, int n)
    {
        int sum, i;
        sum = 0;
        for(i=0;i<n;i++) {
            sum += abs(exp1[i] - exp2[i]);
        }
        return sum;
    }
    
    static void compute_exp_strategy(UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
                                     UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
    
                                     int ch, int is_lfe)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    {
        int i, j;
        int exp_diff;
        
        /* estimate if the exponent variation & decide if they should be
           reused in the next frame */
        exp_strategy[0][ch] = EXP_NEW;
        for(i=1;i<NB_BLOCKS;i++) {
            exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
    #ifdef DEBUG            
            printf("exp_diff=%d\n", exp_diff);
    #endif
            if (exp_diff > EXP_DIFF_THRESHOLD)
                exp_strategy[i][ch] = EXP_NEW;
            else
                exp_strategy[i][ch] = EXP_REUSE;
        }
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* now select the encoding strategy type : if exponents are often
           recoded, we use a coarse encoding */
        i = 0;
        while (i < NB_BLOCKS) {
            j = i + 1;
            while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
                j++;
            switch(j - i) {
            case 1:
                exp_strategy[i][ch] = EXP_D45;
                break;
            case 2:
            case 3:
                exp_strategy[i][ch] = EXP_D25;
                break;
            default:
                exp_strategy[i][ch] = EXP_D15;
                break;
            }
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
    }
    
    /* set exp[i] to min(exp[i], exp1[i]) */
    static void exponent_min(UINT8 exp[N/2], UINT8 exp1[N/2], int n)
    {
        int i;
    
        for(i=0;i<n;i++) {
            if (exp1[i] < exp[i])
                exp[i] = exp1[i];
        }
    }
                                     
    /* update the exponents so that they are the ones the decoder will
       decode. Return the number of bits used to code the exponents */
    static int encode_exp(UINT8 encoded_exp[N/2], 
                          UINT8 exp[N/2], 
                          int nb_exps,
                          int exp_strategy)
    {
        int group_size, nb_groups, i, j, k, recurse, exp_min, delta;
        UINT8 exp1[N/2];
    
        switch(exp_strategy) {
        case EXP_D15:
            group_size = 1;
            break;
        case EXP_D25:
            group_size = 2;
            break;
        default:
        case EXP_D45:
            group_size = 4;
            break;
        }
        nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
    
        /* for each group, compute the minimum exponent */
        exp1[0] = exp[0]; /* DC exponent is handled separately */
        k = 1;
        for(i=1;i<=nb_groups;i++) {
            exp_min = exp[k];
            assert(exp_min >= 0 && exp_min <= 24);
            for(j=1;j<group_size;j++) {
                if (exp[k+j] < exp_min)
                    exp_min = exp[k+j];
            }
            exp1[i] = exp_min;
            k += group_size;
        }
    
        /* constraint for DC exponent */
        if (exp1[0] > 15)
            exp1[0] = 15;
    
        /* Iterate until the delta constraints between each groups are
           satisfyed. I'm sure it is possible to find a better algorithm,
           but I am lazy */
        do {
            recurse = 0;
            for(i=1;i<=nb_groups;i++) {
                delta = exp1[i] - exp1[i-1];
                if (delta > 2) {
                    /* if delta too big, we encode a smaller exponent */
                    exp1[i] = exp1[i-1] + 2;
                } else if (delta < -2) {
                    /* if delta is too small, we must decrease the previous
                   exponent, which means we must recurse */
                    recurse = 1;
                    exp1[i-1] = exp1[i] + 2;
                }
            }
        } while (recurse);
        
        /* now we have the exponent values the decoder will see */
        encoded_exp[0] = exp1[0];
        k = 1;
        for(i=1;i<=nb_groups;i++) {
            for(j=0;j<group_size;j++) {
                encoded_exp[k+j] = exp1[i];
            }
            k += group_size;
        }
        
    #if defined(DEBUG)
        printf("exponents: strategy=%d\n", exp_strategy);
        for(i=0;i<=nb_groups * group_size;i++) {
            printf("%d ", encoded_exp[i]);
        }
        printf("\n");
    #endif
    
        return 4 + (nb_groups / 3) * 7;
    }
    
    /* return the size in bits taken by the mantissa */
    int compute_mantissa_size(AC3EncodeContext *s, UINT8 *m, int nb_coefs)
    {
        int bits, mant, i;
    
        bits = 0;
        for(i=0;i<nb_coefs;i++) {
            mant = m[i];
            switch(mant) {
            case 0:
                /* nothing */
                break;
            case 1:
                /* 3 mantissa in 5 bits */
                if (s->mant1_cnt == 0) 
                    bits += 5;
                if (++s->mant1_cnt == 3)
                    s->mant1_cnt = 0;
                break;
            case 2:
                /* 3 mantissa in 7 bits */
                if (s->mant2_cnt == 0) 
                    bits += 7;
                if (++s->mant2_cnt == 3)
                    s->mant2_cnt = 0;
                break;
            case 3:
                bits += 3;
                break;
            case 4:
                /* 2 mantissa in 7 bits */
                if (s->mant4_cnt == 0)
                    bits += 7;
                if (++s->mant4_cnt == 2) 
                    s->mant4_cnt = 0;
                break;
            case 14:
                bits += 14;
                break;
            case 15:
                bits += 16;
                break;
            default:
                bits += mant - 1;
                break;
            }
        }
        return bits;
    }
    
    
    static int bit_alloc(AC3EncodeContext *s,
                         UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
                         UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
                         UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
                         int frame_bits, int csnroffst, int fsnroffst)
    {
        int i, ch;
    
        /* compute size */
        for(i=0;i<NB_BLOCKS;i++) {
            s->mant1_cnt = 0;
            s->mant2_cnt = 0;
            s->mant4_cnt = 0;
    
            for(ch=0;ch<s->nb_all_channels;ch++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                parametric_bit_allocation(s, bap[i][ch], (INT8 *)encoded_exp[i][ch], 
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                                          0, s->nb_coefs[ch], 
                                          (((csnroffst-15) << 4) + 
                                           fsnroffst) << 2, 
    
                                          fgaintab[s->fgaincod[ch]],
    				      ch == s->lfe_channel);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                frame_bits += compute_mantissa_size(s, bap[i][ch], 
                                                     s->nb_coefs[ch]);
            }
        }
    #if 0
        printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n", 
               csnroffst, fsnroffst, frame_bits, 
               16 * s->frame_size - ((frame_bits + 7) & ~7));
    #endif
        return 16 * s->frame_size - frame_bits;
    }
    
    #define SNR_INC1 4
    
    static int compute_bit_allocation(AC3EncodeContext *s,
                                      UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
                                      UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
                                      UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
                                      int frame_bits)
    {
        int i, ch;
        int csnroffst, fsnroffst;
        UINT8 bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
    
        static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* init default parameters */
        s->sdecaycod = 2;
        s->fdecaycod = 1;
        s->sgaincod = 1;
        s->dbkneecod = 2;
        s->floorcod = 4;
    
        for(ch=0;ch<s->nb_all_channels;ch++) 
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            s->fgaincod[ch] = 4;
        
        /* compute real values */
        s->sdecay = sdecaytab[s->sdecaycod] >> s->halfratecod;
        s->fdecay = fdecaytab[s->fdecaycod] >> s->halfratecod;
        s->sgain = sgaintab[s->sgaincod];
        s->dbknee = dbkneetab[s->dbkneecod];
        s->floor = floortab[s->floorcod];
    
        /* header size */
        frame_bits += 65;
    
        // if (s->acmod == 2)
        //    frame_bits += 2;
        frame_bits += frame_bits_inc[s->acmod];
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* audio blocks */
        for(i=0;i<NB_BLOCKS;i++) {
    
            frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            if (s->acmod == 2)
    
                frame_bits++; /* rematstr */
            frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
    	if (s->lfe)
    	    frame_bits++; /* lfeexpstr */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            for(ch=0;ch<s->nb_channels;ch++) {
                if (exp_strategy[i][ch] != EXP_REUSE)
    
                    frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            }
            frame_bits++; /* baie */
            frame_bits++; /* snr */
            frame_bits += 2; /* delta / skip */
        }
        frame_bits++; /* cplinu for block 0 */
        /* bit alloc info */
    
        /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
        /* csnroffset[6] */
        /* (fsnoffset[4] + fgaincod[4]) * c */
        frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* CRC */
        frame_bits += 16;
    
        /* now the big work begins : do the bit allocation. Modify the snr
           offset until we can pack everything in the requested frame size */
    
        csnroffst = s->csnroffst;
        while (csnroffst >= 0 && 
    
    	   bit_alloc(s, bap, encoded_exp, exp_strategy, frame_bits, csnroffst, 0) < 0)
    	csnroffst -= SNR_INC1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        if (csnroffst < 0) {
    
    	fprintf(stderr, "Yack, Error !!!\n");
    	return -1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        }
        while ((csnroffst + SNR_INC1) <= 63 && 
               bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, 
                         csnroffst + SNR_INC1, 0) >= 0) {
            csnroffst += SNR_INC1;
            memcpy(bap, bap1, sizeof(bap1));
        }
        while ((csnroffst + 1) <= 63 && 
               bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, csnroffst + 1, 0) >= 0) {
            csnroffst++;
            memcpy(bap, bap1, sizeof(bap1));
        }
    
        fsnroffst = 0;
        while ((fsnroffst + SNR_INC1) <= 15 && 
               bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, 
                         csnroffst, fsnroffst + SNR_INC1) >= 0) {
            fsnroffst += SNR_INC1;
            memcpy(bap, bap1, sizeof(bap1));
        }
        while ((fsnroffst + 1) <= 15 && 
               bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, 
                         csnroffst, fsnroffst + 1) >= 0) {
            fsnroffst++;
            memcpy(bap, bap1, sizeof(bap1));
        }
        
        s->csnroffst = csnroffst;
    
        for(ch=0;ch<s->nb_all_channels;ch++)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            s->fsnroffst[ch] = fsnroffst;
    #if defined(DEBUG_BITALLOC)
        {
            int j;
    
            for(i=0;i<6;i++) {
    
                for(ch=0;ch<s->nb_all_channels;ch++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
                    printf("Block #%d Ch%d:\n", i, ch);
                    printf("bap=");
                    for(j=0;j<s->nb_coefs[ch];j++) {
                        printf("%d ",bap[i][ch][j]);
                    }
                    printf("\n");
                }
            }
        }
    #endif
        return 0;
    }
    
    static int AC3_encode_init(AVCodecContext *avctx)
    {
        int freq = avctx->sample_rate;
        int bitrate = avctx->bit_rate;
        int channels = avctx->channels;
        AC3EncodeContext *s = avctx->priv_data;
        int i, j, k, l, ch, v;
        float alpha;
        static unsigned short freqs[3] = { 48000, 44100, 32000 };
    
        static int acmod_defs[6] = {
    	0x01, /* C */
    	0x02, /* L R */
    	0x03, /* L C R */
    	0x06, /* L R SL SR */
    	0x07, /* L C R SL SR */
    	0x07, /* L C R SL SR (+LFE) */
        };
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        avctx->frame_size = AC3_FRAME_SIZE;
        avctx->key_frame = 1; /* always key frame */
        
        /* number of channels */
    
        if (channels < 1 || channels > 6)
    	return -1;
        s->acmod = acmod_defs[channels - 1];
        s->lfe = (channels == 6) ? 1 : 0;
        s->nb_all_channels = channels;
        s->nb_channels = channels > 5 ? 5 : channels;
        s->lfe_channel = s->lfe ? 5 : -1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    
        /* frequency */
        for(i=0;i<3;i++) {
            for(j=0;j<3;j++) 
                if ((freqs[j] >> i) == freq)
                    goto found;
        }
        return -1;
     found:    
        s->sample_rate = freq;
        s->halfratecod = i;
        s->fscod = j;
        s->bsid = 8 + s->halfratecod;
        s->bsmod = 0; /* complete main audio service */
    
        /* bitrate & frame size */
        bitrate /= 1000;
        for(i=0;i<19;i++) {
            if ((bitratetab[i] >> s->halfratecod) == bitrate)
                break;
        }
        if (i == 19)
            return -1;
        s->bit_rate = bitrate;
        s->frmsizecod = i << 1;
        s->frame_size_min = (bitrate * 1000 * AC3_FRAME_SIZE) / (freq * 16);
        /* for now we do not handle fractional sizes */
        s->frame_size = s->frame_size_min;
        
        /* bit allocation init */
        for(ch=0;ch<s->nb_channels;ch++) {
            /* bandwidth for each channel */
            /* XXX: should compute the bandwidth according to the frame
               size, so that we avoid anoying high freq artefacts */
            s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */
            s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37;
        }
    
        if (s->lfe) {
    	s->nb_coefs[s->lfe_channel] = 7; /* fixed */
        }
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        /* initial snr offset */
        s->csnroffst = 40;
    
        /* compute bndtab and masktab from bandsz */
        k = 0;
        l = 0;
        for(i=0;i<50;i++) {
            bndtab[i] = l;
            v = bndsz[i];
            for(j=0;j<v;j++) masktab[k++]=i;
            l += v;
        }
        bndtab[50] = 0;
    
        /* mdct init */
        fft_init(MDCT_NBITS - 2);
        for(i=0;i<N/4;i++) {
            alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
            xcos1[i] = fix15(-cos(alpha));
            xsin1[i] = fix15(-sin(alpha));
        }
    
        ac3_crc_init();
    
        return 0;
    }
    
    /* output the AC3 frame header */
    static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
    {
        init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE, NULL, NULL);
    
        put_bits(&s->pb, 16, 0x0b77); /* frame header */
        put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
        put_bits(&s->pb, 2, s->fscod);
        put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min));
        put_bits(&s->pb, 5, s->bsid);
        put_bits(&s->pb, 3, s->bsmod);
        put_bits(&s->pb, 3, s->acmod);
    
        if ((s->acmod & 0x01) && s->acmod != 0x01)
    	put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
        if (s->acmod & 0x04)
    	put_bits(&s->pb, 2, 1); /* XXX -6 dB */
        if (s->acmod == 0x02)
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            put_bits(&s->pb, 2, 0); /* surround not indicated */
    
        put_bits(&s->pb, 1, s->lfe); /* LFE */
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
        put_bits(&s->pb, 1, 0); /* no compression control word */
        put_bits(&s->pb, 1, 0); /* no lang code */
        put_bits(&s->pb, 1, 0); /* no audio production info */
        put_bits(&s->pb, 1, 0); /* no copyright */
        put_bits(&s->pb, 1, 1); /* original bitstream */
        put_bits(&s->pb, 1, 0); /* no time code 1 */
        put_bits(&s->pb, 1, 0); /* no time code 2 */
        put_bits(&s->pb, 1, 0); /* no addtional bit stream info */
    }
    
    /* symetric quantization on 'levels' levels */
    static inline int sym_quant(int c, int e, int levels)
    {
        int v;
    
        if (c >= 0) {
    
            v = (levels * (c << e)) >> 24;
            v = (v + 1) >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            v = (levels >> 1) + v;
        } else {
    
            v = (levels * ((-c) << e)) >> 24;
            v = (v + 1) >> 1;
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            v = (levels >> 1) - v;
        }
        assert (v >= 0 && v < levels);
        return v;
    }
    
    /* asymetric quantization on 2^qbits levels */
    static inline int asym_quant(int c, int e, int qbits)
    {
        int lshift, m, v;
    
        lshift = e + qbits - 24;
        if (lshift >= 0)
            v = c << lshift;
        else
            v = c >> (-lshift);
        /* rounding */
        v = (v + 1) >> 1;
        m = (1 << (qbits-1));
        if (v >= m)
            v = m - 1;
        assert(v >= -m);
        return v & ((1 << qbits)-1);
    }
    
    /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
       frame */
    static void output_audio_block(AC3EncodeContext *s,
                                   UINT8 exp_strategy[AC3_MAX_CHANNELS],
                                   UINT8 encoded_exp[AC3_MAX_CHANNELS][N/2],
                                   UINT8 bap[AC3_MAX_CHANNELS][N/2],
                                   INT32 mdct_coefs[AC3_MAX_CHANNELS][N/2],
                                   INT8 global_exp[AC3_MAX_CHANNELS],
                                   int block_num)
    {
        int ch, nb_groups, group_size, i, baie;
        UINT8 *p;
        UINT16 qmant[AC3_MAX_CHANNELS][N/2];
        int exp0, exp1;
        int mant1_cnt, mant2_cnt, mant4_cnt;
        UINT16 *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
        int delta0, delta1, delta2;
    
        for(ch=0;ch<s->nb_channels;ch++) 
            put_bits(&s->pb, 1, 0); /* 512 point MDCT */
        for(ch=0;ch<s->nb_channels;ch++) 
            put_bits(&s->pb, 1, 1); /* no dither */
        put_bits(&s->pb, 1, 0); /* no dynamic range */
        if (block_num == 0) {
            /* for block 0, even if no coupling, we must say it. This is a
               waste of bit :-) */
            put_bits(&s->pb, 1, 1); /* coupling strategy present */
            put_bits(&s->pb, 1, 0); /* no coupling strategy */
        } else {
            put_bits(&s->pb, 1, 0); /* no new coupling strategy */
        }
    
        if (s->acmod == 2) {
            put_bits(&s->pb, 1, 0); /* no matrixing (but should be used in the future) */
        }
    
    #if defined(DEBUG) 
        {
            static int count = 0;
            printf("Block #%d (%d)\n", block_num, count++);
        }
    #endif
        /* exponent strategy */
        for(ch=0;ch<s->nb_channels;ch++) {
            put_bits(&s->pb, 2, exp_strategy[ch]);
        }
        
    
        if (s->lfe) {
    	put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
        }
    
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
        for(ch=0;ch<s->nb_channels;ch++) {
            if (exp_strategy[ch] != EXP_REUSE)
                put_bits(&s->pb, 6, s->chbwcod[ch]);
        }
        
        /* exponents */
    
        for (ch = 0; ch < s->nb_all_channels; ch++) {
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            switch(exp_strategy[ch]) {
            case EXP_REUSE:
                continue;
            case EXP_D15:
                group_size = 1;
                break;
            case EXP_D25:
                group_size = 2;
                break;
            default:
            case EXP_D45:
                group_size = 4;
                break;
            }
    
    	nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
            p = encoded_exp[ch];
    
            /* first exponent */
            exp1 = *p++;
            put_bits(&s->pb, 4, exp1);
    
            /* next ones are delta encoded */
            for(i=0;i<nb_groups;i++) {
                /* merge three delta in one code */
                exp0 = exp1;
                exp1 = p[0];
                p += group_size;
                delta0 = exp1 - exp0 + 2;
    
                exp0 = exp1;
                exp1 = p[0];
                p += group_size;
                delta1 = exp1 - exp0 + 2;
    
                exp0 = exp1;
                exp1 = p[0];
                p += group_size;
                delta2 = exp1 - exp0 + 2;