Skip to content
Snippets Groups Projects
aacdec.c 101 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC decoder
     * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
     * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
     *
    
     * AAC LATM decoder
     * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
    
     * Copyright (c) 2010      Janne Grunau <janne-libav@jannau.net>
    
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
    
     * AAC decoder
     * @author Oded Shimon  ( ods15 ods15 dyndns org )
     * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
     */
    
    /*
     * supported tools
     *
     * Support?             Name
     * N (code in SoC repo) gain control
     * Y                    block switching
     * Y                    window shapes - standard
     * N                    window shapes - Low Delay
     * Y                    filterbank - standard
     * N (code in SoC repo) filterbank - Scalable Sample Rate
     * Y                    Temporal Noise Shaping
    
     * Y                    Long Term Prediction
    
     * Y                    intensity stereo
     * Y                    channel coupling
    
     * Y                    frequency domain prediction
    
     * Y                    Perceptual Noise Substitution
     * Y                    Mid/Side stereo
     * N                    Scalable Inverse AAC Quantization
     * N                    Frequency Selective Switch
     * N                    upsampling filter
     * Y                    quantization & coding - AAC
     * N                    quantization & coding - TwinVQ
     * N                    quantization & coding - BSAC
     * N                    AAC Error Resilience tools
     * N                    Error Resilience payload syntax
     * N                    Error Protection tool
     * N                    CELP
     * N                    Silence Compression
     * N                    HVXC
     * N                    HVXC 4kbits/s VR
     * N                    Structured Audio tools
     * N                    Structured Audio Sample Bank Format
     * N                    MIDI
     * N                    Harmonic and Individual Lines plus Noise
     * N                    Text-To-Speech Interface
    
    Alex Converse's avatar
    Alex Converse committed
     * Y                    Spectral Band Replication
    
     * Y (not in this code) Layer-1
     * Y (not in this code) Layer-2
     * Y (not in this code) Layer-3
     * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
    
     * Y                    Parametric Stereo
    
     * N                    Direct Stream Transfer
     *
     * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
     *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
               Parametric Stereo.
     */
    
    
    #include "avcodec.h"
    
    #include "get_bits.h"
    
    #include "dsputil.h"
    
    #include "fft.h"
    
    #include "kbdwin.h"
    
    #include "sinewin.h"
    
    
    #include "aac.h"
    #include "aactab.h"
    
    #include "cbrt_tablegen.h"
    
    Alex Converse's avatar
    Alex Converse committed
    #include "sbr.h"
    #include "aacsbr.h"
    
    #include "mpeg4audio.h"
    
    #include "aacadtsdec.h"
    
    #include "libavutil/intfloat.h"
    
    
    #include <assert.h>
    #include <errno.h>
    #include <math.h>
    #include <string.h>
    
    
    #if ARCH_ARM
    #   include "arm/aac.h"
    #endif
    
    
    static VLC vlc_scalefactors;
    static VLC vlc_spectral[11];
    
    
    #define overread_err "Input buffer exhausted before END element found\n"
    
    static int count_channels(uint8_t (*layout)[3], int tags)
    
        int i, sum = 0;
        for (i = 0; i < tags; i++) {
            int syn_ele = layout[i][0];
            int pos     = layout[i][2];
            sum += (1 + (syn_ele == TYPE_CPE)) *
                   (pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC);
    
    /**
     * Check for the channel element in the current channel position configuration.
     * If it exists, make sure the appropriate element is allocated and map the
     * channel order to match the internal FFmpeg channel layout.
     *
     * @param   che_pos current channel position configuration
     * @param   type channel element type
     * @param   id channel element id
     * @param   channels count of the number of channels in the configuration
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static av_cold int che_configure(AACContext *ac,
    
                                     enum ChannelPosition che_pos,
    
                                     int type, int id, int *channels)
    
        if (che_pos) {
    
            if (!ac->che[type][id]) {
                if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
                    return AVERROR(ENOMEM);
                ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
            }
    
                if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) {
    
                    av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n");
                    return AVERROR_INVALIDDATA;
                }
    
                ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
    
                if (type == TYPE_CPE ||
    
                    (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) {
    
                    ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
                }
            }
    
    Alex Converse's avatar
    Alex Converse committed
        } else {
            if (ac->che[type][id])
                ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
    
    struct elem_to_channel {
        uint64_t av_position;
        uint8_t syn_ele;
        uint8_t elem_id;
        uint8_t aac_position;
    };
    
    static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID],
        uint8_t (*layout_map)[3], int offset, int tags, uint64_t left,
        uint64_t right, int pos)
    {
        if (layout_map[offset][0] == TYPE_CPE) {
            e2c_vec[offset] = (struct elem_to_channel) {
                .av_position = left | right, .syn_ele = TYPE_CPE,
                .elem_id = layout_map[offset    ][1], .aac_position = pos };
            return 1;
        } else {
            e2c_vec[offset]   = (struct elem_to_channel) {
                .av_position = left, .syn_ele = TYPE_SCE,
                .elem_id = layout_map[offset    ][1], .aac_position = pos };
            e2c_vec[offset + 1] = (struct elem_to_channel) {
                .av_position = right, .syn_ele = TYPE_SCE,
                .elem_id = layout_map[offset + 1][1], .aac_position = pos };
            return 2;
        }
    }
    
    static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, int *current) {
        int num_pos_channels = 0;
        int first_cpe = 0;
        int sce_parity = 0;
        int i;
        for (i = *current; i < tags; i++) {
            if (layout_map[i][2] != pos)
                break;
            if (layout_map[i][0] == TYPE_CPE) {
                if (sce_parity) {
    
                    if (pos == AAC_CHANNEL_FRONT && !first_cpe) {
    
                        sce_parity = 0;
                    } else {
                        return -1;
                    }
                }
                num_pos_channels += 2;
                first_cpe = 1;
            } else {
                num_pos_channels++;
                sce_parity ^= 1;
            }
        }
        if (sce_parity &&
            ((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE))
                return -1;
        *current = i;
        return num_pos_channels;
    }
    
    static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags)
    {
        int i, n, total_non_cc_elements;
    
        struct elem_to_channel e2c_vec[4*MAX_ELEM_ID] = {{ 0 }};
    
        int num_front_channels, num_side_channels, num_back_channels;
        uint64_t layout;
    
    
        if (FF_ARRAY_ELEMS(e2c_vec) < tags)
    
        i = 0;
        num_front_channels =
            count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i);
        if (num_front_channels < 0)
            return 0;
        num_side_channels =
            count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i);
        if (num_side_channels < 0)
            return 0;
        num_back_channels =
            count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i);
        if (num_back_channels < 0)
            return 0;
    
        i = 0;
        if (num_front_channels & 1) {
            e2c_vec[i] = (struct elem_to_channel) {
                .av_position = AV_CH_FRONT_CENTER, .syn_ele = TYPE_SCE,
                .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_FRONT };
            i++;
            num_front_channels--;
        }
        if (num_front_channels >= 4) {
            i += assign_pair(e2c_vec, layout_map, i, tags,
                             AV_CH_FRONT_LEFT_OF_CENTER,
                             AV_CH_FRONT_RIGHT_OF_CENTER,
                             AAC_CHANNEL_FRONT);
            num_front_channels -= 2;
        }
        if (num_front_channels >= 2) {
            i += assign_pair(e2c_vec, layout_map, i, tags,
                             AV_CH_FRONT_LEFT,
                             AV_CH_FRONT_RIGHT,
                             AAC_CHANNEL_FRONT);
            num_front_channels -= 2;
        }
        while (num_front_channels >= 2) {
            i += assign_pair(e2c_vec, layout_map, i, tags,
                             UINT64_MAX,
                             UINT64_MAX,
                             AAC_CHANNEL_FRONT);
            num_front_channels -= 2;
        }
    
        if (num_side_channels >= 2) {
            i += assign_pair(e2c_vec, layout_map, i, tags,
                             AV_CH_SIDE_LEFT,
                             AV_CH_SIDE_RIGHT,
                             AAC_CHANNEL_FRONT);
            num_side_channels -= 2;
        }
        while (num_side_channels >= 2) {
            i += assign_pair(e2c_vec, layout_map, i, tags,
                             UINT64_MAX,
                             UINT64_MAX,
                             AAC_CHANNEL_SIDE);
            num_side_channels -= 2;
        }
    
        while (num_back_channels >= 4) {
            i += assign_pair(e2c_vec, layout_map, i, tags,
                             UINT64_MAX,
                             UINT64_MAX,
                             AAC_CHANNEL_BACK);
            num_back_channels -= 2;
        }
        if (num_back_channels >= 2) {
            i += assign_pair(e2c_vec, layout_map, i, tags,
                             AV_CH_BACK_LEFT,
                             AV_CH_BACK_RIGHT,
                             AAC_CHANNEL_BACK);
            num_back_channels -= 2;
        }
        if (num_back_channels) {
            e2c_vec[i] = (struct elem_to_channel) {
              .av_position = AV_CH_BACK_CENTER, .syn_ele = TYPE_SCE,
              .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_BACK };
            i++;
            num_back_channels--;
        }
    
        if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
            e2c_vec[i] = (struct elem_to_channel) {
              .av_position = AV_CH_LOW_FREQUENCY, .syn_ele = TYPE_LFE,
              .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
            i++;
        }
        while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
            e2c_vec[i] = (struct elem_to_channel) {
              .av_position = UINT64_MAX, .syn_ele = TYPE_LFE,
              .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
            i++;
        }
    
        // Must choose a stable sort
        total_non_cc_elements = n = i;
        do {
            int next_n = 0;
            for (i = 1; i < n; i++) {
                if (e2c_vec[i-1].av_position > e2c_vec[i].av_position) {
                    FFSWAP(struct elem_to_channel, e2c_vec[i-1], e2c_vec[i]);
                    next_n = i;
                }
            }
            n = next_n;
        } while (n > 0);
    
        layout = 0;
        for (i = 0; i < total_non_cc_elements; i++) {
            layout_map[i][0] = e2c_vec[i].syn_ele;
            layout_map[i][1] = e2c_vec[i].elem_id;
            layout_map[i][2] = e2c_vec[i].aac_position;
            if (e2c_vec[i].av_position != UINT64_MAX) {
                layout |= e2c_vec[i].av_position;
            }
        }
    
        return layout;
    }
    
    
    /**
     * Save current output configuration if and only if it has been locked.
     */
    static void push_output_configuration(AACContext *ac) {
        if (ac->oc[1].status == OC_LOCKED) {
            ac->oc[0] = ac->oc[1];
        }
        ac->oc[1].status = OC_NONE;
    }
    
    /**
     * Restore the previous output configuration if and only if the current
     * configuration is unlocked.
     */
    static void pop_output_configuration(AACContext *ac) {
        if (ac->oc[1].status != OC_LOCKED) {
    
            if (ac->oc[0].status == OC_LOCKED) {
                ac->oc[1] = ac->oc[0];
                ac->avctx->channels = ac->oc[1].channels;
                ac->avctx->channel_layout = ac->oc[1].channel_layout;
            }
    
    /**
     * Configure output channel order based on the current program configuration element.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int output_configure(AACContext *ac,
    
                                        uint8_t layout_map[MAX_ELEM_ID*4][3], int tags,
    
                                        int channel_config, enum OCStatus oc_type)
    
        AVCodecContext *avctx = ac->avctx;
    
        uint64_t layout = 0;
    
        if (ac->oc[1].layout_map != layout_map) {
            memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0]));
            ac->oc[1].layout_map_tags = tags;
    
        // Try to sniff a reasonable channel order, otherwise output the
        // channels in the order the PCE declared them.
        if (avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE)
            layout = sniff_channel_order(layout_map, tags);
        for (i = 0; i < tags; i++) {
            int type =     layout_map[i][0];
            int id =       layout_map[i][1];
            int position = layout_map[i][2];
            // Allocate or free elements depending on if they are in the
            // current program configuration.
            ret = che_configure(ac, position, type, id, &channels);
            if (ret < 0)
                return ret;
    
        if (ac->oc[1].m4ac.ps == 1 && channels == 2) {
            if (layout == AV_CH_FRONT_CENTER) {
                layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT;
            } else {
                layout = 0;
            }
        }
    
        memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
    
        if (layout) avctx->channel_layout = layout;
    
        ac->oc[1].channel_layout = layout;
    
        avctx->channels = ac->oc[1].channels = channels;
        ac->oc[1].status = oc_type;
    
    static void flush(AVCodecContext *avctx)
    {
        AACContext *ac= avctx->priv_data;
        int type, i, j;
    
        for (type = 3; type >= 0; type--) {
            for (i = 0; i < MAX_ELEM_ID; i++) {
                ChannelElement *che = ac->che[type][i];
                if (che) {
                    for (j = 0; j <= 1; j++) {
                        memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved));
                    }
                }
            }
        }
    }
    
    
    /**
     * Set up channel positions based on a default channel configuration
     * as specified in table 1.17.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int set_default_channel_config(AVCodecContext *avctx,
    
                                                  uint8_t (*layout_map)[3],
                                                  int *tags,
                                                  int channel_config)
    {
        if (channel_config < 1 || channel_config > 7) {
            av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
                   channel_config);
            return -1;
        }
        *tags = tags_per_config[channel_config];
        memcpy(layout_map, aac_channel_layout_map[channel_config-1], *tags * sizeof(*layout_map));
        return 0;
    }
    
    static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
    {
        // For PCE based channel configurations map the channels solely based on tags.
    
        if (!ac->oc[1].m4ac.chan_config) {
    
        // Allow single CPE stereo files to be signalled with mono configuration.
    
        if (!ac->tags_mapped && type == TYPE_CPE && ac->oc[1].m4ac.chan_config == 1) {
    
            push_output_configuration(ac);
    
            av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n");
    
    
            if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
                                           2) < 0)
                return NULL;
            if (output_configure(ac, layout_map, layout_map_tags,
                                 2, OC_TRIAL_FRAME) < 0)
                return NULL;
    
    
            ac->oc[1].m4ac.chan_config = 2;
        }
        // And vice-versa
    
        if (!ac->tags_mapped && type == TYPE_SCE && ac->oc[1].m4ac.chan_config == 2) {
    
            uint8_t layout_map[MAX_ELEM_ID*4][3];
            int layout_map_tags;
            push_output_configuration(ac);
    
    
            av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n");
    
    
            if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
                                           1) < 0)
                return NULL;
            if (output_configure(ac, layout_map, layout_map_tags,
                                 1, OC_TRIAL_FRAME) < 0)
                return NULL;
    
            ac->oc[1].m4ac.chan_config = 1;
    
        // For indexed channel configurations map the channels solely based on position.
    
        switch (ac->oc[1].m4ac.chan_config) {
    
        case 7:
            if (ac->tags_mapped == 3 && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
            }
        case 6:
            /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
               instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
               encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
    
            if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
    
                ac->tags_mapped++;
                return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
            }
        case 5:
            if (ac->tags_mapped == 2 && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
            }
        case 4:
    
            if (ac->tags_mapped == 2 && ac->oc[1].m4ac.chan_config == 4 && type == TYPE_SCE) {
    
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
            }
        case 3:
        case 2:
    
            if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && type == TYPE_CPE) {
    
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
    
            } else if (ac->oc[1].m4ac.chan_config == 2) {
    
                return NULL;
            }
        case 1:
            if (!ac->tags_mapped && type == TYPE_SCE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
            }
        default:
            return NULL;
        }
    }
    
    
    /**
     * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
     *
     * @param type speaker type/position for these channels
     */
    
    static void decode_channel_map(uint8_t layout_map[][3],
    
                                   enum ChannelPosition type,
                                   GetBitContext *gb, int n)
    {
        while (n--) {
    
            enum RawDataBlockType syn_ele;
            switch (type) {
            case AAC_CHANNEL_FRONT:
            case AAC_CHANNEL_BACK:
            case AAC_CHANNEL_SIDE:
                syn_ele = get_bits1(gb);
                break;
            case AAC_CHANNEL_CC:
                skip_bits1(gb);
                syn_ele = TYPE_CCE;
                break;
            case AAC_CHANNEL_LFE:
                syn_ele = TYPE_LFE;
                break;
            }
            layout_map[0][0] = syn_ele;
            layout_map[0][1] = get_bits(gb, 4);
            layout_map[0][2] = type;
            layout_map++;
    
        }
    }
    
    /**
     * Decode program configuration element; reference: table 4.2.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
    
                          GetBitContext *gb)
    {
    
        int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
    
        int comment_len;
    
    
        skip_bits(gb, 2);  // object_type
    
    
        if (m4ac->sampling_index != sampling_index)
            av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
    
        num_front       = get_bits(gb, 4);
        num_side        = get_bits(gb, 4);
        num_back        = get_bits(gb, 4);
        num_lfe         = get_bits(gb, 2);
        num_assoc_data  = get_bits(gb, 3);
        num_cc          = get_bits(gb, 4);
    
    
        if (get_bits1(gb))
            skip_bits(gb, 4); // mono_mixdown_tag
        if (get_bits1(gb))
            skip_bits(gb, 4); // stereo_mixdown_tag
    
        if (get_bits1(gb))
            skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
    
        if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
    
            av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
    
        decode_channel_map(layout_map       , AAC_CHANNEL_FRONT, gb, num_front);
        tags = num_front;
        decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE,  gb, num_side);
        tags += num_side;
        decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK,  gb, num_back);
        tags += num_back;
        decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE,   gb, num_lfe);
        tags += num_lfe;
    
    
        skip_bits_long(gb, 4 * num_assoc_data);
    
    
        decode_channel_map(layout_map + tags, AAC_CHANNEL_CC,    gb, num_cc);
        tags += num_cc;
    
    
        align_get_bits(gb);
    
        /* comment field, first byte is length */
    
        comment_len = get_bits(gb, 8) * 8;
        if (get_bits_left(gb) < comment_len) {
    
            av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
    
            return -1;
        }
        skip_bits_long(gb, comment_len);
    
    /**
     * Decode GA "General Audio" specific configuration; reference: table 4.1.
     *
    
     * @param   ac          pointer to AACContext, may be null
     * @param   avctx       pointer to AVCCodecContext, used for logging
     *
    
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
                                         GetBitContext *gb,
    
                                         int channel_config)
    {
    
        int extension_flag, ret;
    
        uint8_t layout_map[MAX_ELEM_ID*4][3];
        int tags = 0;
    
        if (get_bits1(gb)) { // frameLengthFlag
    
            av_log_missing_feature(avctx, "960/120 MDCT window is", 1);
    
            return -1;
        }
    
        if (get_bits1(gb))       // dependsOnCoreCoder
            skip_bits(gb, 14);   // coreCoderDelay
        extension_flag = get_bits1(gb);
    
    
        if (m4ac->object_type == AOT_AAC_SCALABLE ||
            m4ac->object_type == AOT_ER_AAC_SCALABLE)
    
            skip_bits(gb, 3);     // layerNr
    
        if (channel_config == 0) {
            skip_bits(gb, 4);  // element_instance_tag
    
            tags = decode_pce(avctx, m4ac, layout_map, gb);
            if (tags < 0)
                return tags;
    
            if ((ret = set_default_channel_config(avctx, layout_map, &tags, channel_config)))
    
        if (count_channels(layout_map, tags) > 1) {
    
            m4ac->ps = 0;
        } else if (m4ac->sbr == 1 && m4ac->ps == -1)
            m4ac->ps = 1;
    
    
        if (ac && (ret = output_configure(ac, layout_map, tags,
                                          channel_config, OC_GLOBAL_HDR)))
    
            return ret;
    
        if (extension_flag) {
    
            case AOT_ER_BSAC:
                skip_bits(gb, 5);    // numOfSubFrame
                skip_bits(gb, 11);   // layer_length
                break;
            case AOT_ER_AAC_LC:
            case AOT_ER_AAC_LTP:
            case AOT_ER_AAC_SCALABLE:
            case AOT_ER_AAC_LD:
                skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
    
                                        * aacScalefactorDataResilienceFlag
                                        * aacSpectralDataResilienceFlag
                                        */
    
                break;
    
            }
            skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
        }
        return 0;
    }
    
    /**
     * Decode audio specific configuration; reference: table 1.13.
     *
    
     * @param   ac          pointer to AACContext, may be null
     * @param   avctx       pointer to AVCCodecContext, used for logging
     * @param   m4ac        pointer to MPEG4AudioConfig, used for parsing
    
     * @param   data        pointer to buffer holding an audio specific config
     * @param   bit_size    size of audio specific config or data in bits
     * @param   sync_extension look for an appended sync extension
    
     * @return  Returns error status or number of consumed bits. <0 - error
    
    static int decode_audio_specific_config(AACContext *ac,
    
                                            AVCodecContext *avctx,
                                            MPEG4AudioConfig *m4ac,
    
                                            const uint8_t *data, int bit_size,
                                            int sync_extension)
    
        GetBitContext gb;
        int i;
    
    
        av_dlog(avctx, "audio specific config size %d\n", bit_size >> 3);
        for (i = 0; i < bit_size >> 3; i++)
             av_dlog(avctx, "%02x ", data[i]);
    
        av_dlog(avctx, "\n");
    
    
        init_get_bits(&gb, data, bit_size);
    
        if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, sync_extension)) < 0)
    
            av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
    
            return -1;
        }
    
        skip_bits_long(&gb, i);
    
    
        case AOT_AAC_LC:
    
        case AOT_AAC_LTP:
    
            if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
    
                return -1;
            break;
        default:
    
            av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
    
                   m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
    
        av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
                m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
                m4ac->sample_rate, m4ac->sbr, m4ac->ps);
    
    
        return get_bits_count(&gb);
    
    /**
     * linear congruential pseudorandom number generator
     *
     * @param   previous_val    pointer to the current state of the generator
     *
     * @return  Returns a 32-bit pseudorandom integer
     */
    
    static av_always_inline int lcg_random(int previous_val)
    {
    
        return previous_val * 1664525 + 1013904223;
    }
    
    
    static av_always_inline void reset_predict_state(PredictorState *ps)
    
    {
        ps->r0   = 0.0f;
        ps->r1   = 0.0f;
    
        ps->cor0 = 0.0f;
        ps->cor1 = 0.0f;
        ps->var0 = 1.0f;
        ps->var1 = 1.0f;
    }
    
    
    static void reset_all_predictors(PredictorState *ps)
    {
    
        int i;
        for (i = 0; i < MAX_PREDICTORS; i++)
            reset_predict_state(&ps[i]);
    }
    
    
    static int sample_rate_idx (int rate)
    {
             if (92017 <= rate) return 0;
        else if (75132 <= rate) return 1;
        else if (55426 <= rate) return 2;
        else if (46009 <= rate) return 3;
        else if (37566 <= rate) return 4;
        else if (27713 <= rate) return 5;
        else if (23004 <= rate) return 6;
        else if (18783 <= rate) return 7;
        else if (13856 <= rate) return 8;
        else if (11502 <= rate) return 9;
        else if (9391  <= rate) return 10;
        else                    return 11;
    }
    
    
    static void reset_predictor_group(PredictorState *ps, int group_num)
    {
    
        for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
    
    #define AAC_INIT_VLC_STATIC(num, size) \
        INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
             ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
            ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
            size);
    
    
    static av_cold int aac_decode_init(AVCodecContext *avctx)
    
        AACContext *ac = avctx->priv_data;
    
        ac->avctx = avctx;
    
        ac->oc[1].m4ac.sample_rate = avctx->sample_rate;
    
        if (avctx->extradata_size > 0) {
    
            if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
    
                                             avctx->extradata_size*8, 1) < 0)
    
            uint8_t layout_map[MAX_ELEM_ID*4][3];
            int layout_map_tags;
    
    
            sr = sample_rate_idx(avctx->sample_rate);
    
            ac->oc[1].m4ac.sampling_index = sr;
            ac->oc[1].m4ac.channels = avctx->channels;
            ac->oc[1].m4ac.sbr = -1;
            ac->oc[1].m4ac.ps = -1;
    
    
            for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
                if (ff_mpeg4audio_channels[i] == avctx->channels)
                    break;
            if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) {
                i = 0;
            }
    
            ac->oc[1].m4ac.chan_config = i;
    
            if (ac->oc[1].m4ac.chan_config) {
    
                int ret = set_default_channel_config(avctx, layout_map,
    
                    &layout_map_tags, ac->oc[1].m4ac.chan_config);
    
                    output_configure(ac, layout_map, layout_map_tags,
    
                                     ac->oc[1].m4ac.chan_config, OC_GLOBAL_HDR);
    
                else if (avctx->err_recognition & AV_EF_EXPLODE)
    
        if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
            avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
            output_scale_factor = 1.0 / 32768.0;
        } else {
            avctx->sample_fmt = AV_SAMPLE_FMT_S16;
            output_scale_factor = 1.0;
        }
    
        AAC_INIT_VLC_STATIC( 0, 304);
        AAC_INIT_VLC_STATIC( 1, 270);
        AAC_INIT_VLC_STATIC( 2, 550);
        AAC_INIT_VLC_STATIC( 3, 300);
        AAC_INIT_VLC_STATIC( 4, 328);
        AAC_INIT_VLC_STATIC( 5, 294);
        AAC_INIT_VLC_STATIC( 6, 306);
        AAC_INIT_VLC_STATIC( 7, 268);
        AAC_INIT_VLC_STATIC( 8, 510);
        AAC_INIT_VLC_STATIC( 9, 366);
        AAC_INIT_VLC_STATIC(10, 462);
    
    Alex Converse's avatar
    Alex Converse committed
        ff_aac_sbr_init();
    
    
        ff_dsputil_init(&ac->dsp, avctx);
    
        ff_fmt_convert_init(&ac->fmt_conv, avctx);
    
        ac->random_state = 0x1f2e3d4c;
    
    
        ff_aac_tableinit();
    
        INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
    
                        ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
                        ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
                        352);
    
        ff_mdct_init(&ac->mdct,       11, 1, output_scale_factor/1024.0);
        ff_mdct_init(&ac->mdct_small,  8, 1, output_scale_factor/128.0);
        ff_mdct_init(&ac->mdct_ltp,   11, 0, -2.0/output_scale_factor);
    
        // window initialization
        ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
        ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
    
        ff_init_ff_sine_windows(10);
        ff_init_ff_sine_windows( 7);
    
        avcodec_get_frame_defaults(&ac->frame);
        avctx->coded_frame = &ac->frame;
    
    
    /**
     * Skip data_stream_element; reference: table 4.10.
     */
    
    static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
    
        int byte_align = get_bits1(gb);
        int count = get_bits(gb, 8);
        if (count == 255)
            count += get_bits(gb, 8);
        if (byte_align)
            align_get_bits(gb);
    
    
        if (get_bits_left(gb) < 8 * count) {
    
            av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err);
    
        skip_bits_long(gb, 8 * count);
    
    static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
                                 GetBitContext *gb)
    {
    
        int sfb;
        if (get_bits1(gb)) {
            ics->predictor_reset_group = get_bits(gb, 5);
            if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
    
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
    
        for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) {
    
            ics->prediction_used[sfb] = get_bits1(gb);
        }
        return 0;
    }
    
    
    /**
     * Decode Long Term Prediction data; reference: table 4.xx.
     */
    static void decode_ltp(AACContext *ac, LongTermPrediction *ltp,
                           GetBitContext *gb, uint8_t max_sfb)
    {
        int sfb;
    
        ltp->lag  = get_bits(gb, 11);
    
        ltp->coef = ltp_coef[get_bits(gb, 3)];
    
        for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
            ltp->used[sfb] = get_bits1(gb);
    }
    
    
    /**
     * Decode Individual Channel Stream info; reference: table 4.6.
     */
    
    static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
    
                               GetBitContext *gb)
    
        if (get_bits1(gb)) {
    
            av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
    
            return AVERROR_INVALIDDATA;
    
        }
        ics->window_sequence[1] = ics->window_sequence[0];
        ics->window_sequence[0] = get_bits(gb, 2);
    
        ics->use_kb_window[1]   = ics->use_kb_window[0];
        ics->use_kb_window[0]   = get_bits1(gb);
        ics->num_window_groups  = 1;
        ics->group_len[0]       = 1;
    
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            int i;
            ics->max_sfb = get_bits(gb, 4);
            for (i = 0; i < 7; i++) {
                if (get_bits1(gb)) {
    
                    ics->group_len[ics->num_window_groups - 1]++;
    
                } else {
                    ics->num_window_groups++;