Skip to content
Snippets Groups Projects
aacdec.c 89.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC decoder
     * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
     * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
     *
    
     * AAC LATM decoder
     * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
     * Copyright (c) 2010      Janne Grunau <janne-ffmpeg@jannau.net>
     *
    
     * This file is part of Libav.
    
     * Libav is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
    
     * Libav is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
    
     * License along with Libav; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
    
     * AAC decoder
     * @author Oded Shimon  ( ods15 ods15 dyndns org )
     * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
     */
    
    /*
     * supported tools
     *
     * Support?             Name
     * N (code in SoC repo) gain control
     * Y                    block switching
     * Y                    window shapes - standard
     * N                    window shapes - Low Delay
     * Y                    filterbank - standard
     * N (code in SoC repo) filterbank - Scalable Sample Rate
     * Y                    Temporal Noise Shaping
    
     * Y                    Long Term Prediction
    
     * Y                    intensity stereo
     * Y                    channel coupling
    
     * Y                    frequency domain prediction
    
     * Y                    Perceptual Noise Substitution
     * Y                    Mid/Side stereo
     * N                    Scalable Inverse AAC Quantization
     * N                    Frequency Selective Switch
     * N                    upsampling filter
     * Y                    quantization & coding - AAC
     * N                    quantization & coding - TwinVQ
     * N                    quantization & coding - BSAC
     * N                    AAC Error Resilience tools
     * N                    Error Resilience payload syntax
     * N                    Error Protection tool
     * N                    CELP
     * N                    Silence Compression
     * N                    HVXC
     * N                    HVXC 4kbits/s VR
     * N                    Structured Audio tools
     * N                    Structured Audio Sample Bank Format
     * N                    MIDI
     * N                    Harmonic and Individual Lines plus Noise
     * N                    Text-To-Speech Interface
    
    Alex Converse's avatar
    Alex Converse committed
     * Y                    Spectral Band Replication
    
     * Y (not in this code) Layer-1
     * Y (not in this code) Layer-2
     * Y (not in this code) Layer-3
     * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
    
     * Y                    Parametric Stereo
    
     * N                    Direct Stream Transfer
     *
     * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
     *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
               Parametric Stereo.
     */
    
    
    #include "avcodec.h"
    
    #include "get_bits.h"
    
    #include "dsputil.h"
    
    #include "fft.h"
    
    #include "kbdwin.h"
    
    #include "sinewin.h"
    
    
    #include "aac.h"
    #include "aactab.h"
    
    #include "cbrt_tablegen.h"
    
    Alex Converse's avatar
    Alex Converse committed
    #include "sbr.h"
    #include "aacsbr.h"
    
    #include "mpeg4audio.h"
    
    #include "aacadtsdec.h"
    
    
    #include <assert.h>
    #include <errno.h>
    #include <math.h>
    #include <string.h>
    
    
    #if ARCH_ARM
    #   include "arm/aac.h"
    #endif
    
    
    union float754 {
        float f;
        uint32_t i;
    };
    
    static VLC vlc_scalefactors;
    static VLC vlc_spectral[11];
    
    
    static const char overread_err[] = "Input buffer exhausted before END element found\n";
    
    
    static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
    {
    
        // For PCE based channel configurations map the channels solely based on tags.
        if (!ac->m4ac.chan_config) {
    
            return ac->tag_che_map[type][elem_id];
        }
    
        // For indexed channel configurations map the channels solely based on position.
    
        switch (ac->m4ac.chan_config) {
    
        case 7:
            if (ac->tags_mapped == 3 && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
            }
        case 6:
            /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
    
               instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
               encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
    
            if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
                ac->tags_mapped++;
                return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
            }
        case 5:
            if (ac->tags_mapped == 2 && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
            }
        case 4:
            if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
            }
        case 3:
        case 2:
            if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
            } else if (ac->m4ac.chan_config == 2) {
    
            }
        case 1:
            if (!ac->tags_mapped && type == TYPE_SCE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
            }
        default:
            return NULL;
    
    /**
     * Check for the channel element in the current channel position configuration.
     * If it exists, make sure the appropriate element is allocated and map the
    
     * channel order to match the internal Libav channel layout.
    
     *
     * @param   che_pos current channel position configuration
     * @param   type channel element type
     * @param   id channel element id
     * @param   channels count of the number of channels in the configuration
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static av_cold int che_configure(AACContext *ac,
    
                                     enum ChannelPosition che_pos[4][MAX_ELEM_ID],
                                     int type, int id, int *channels)
    
    {
        if (che_pos[type][id]) {
            if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
                return AVERROR(ENOMEM);
    
            ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
    
            if (type != TYPE_CCE) {
                ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
    
                if (type == TYPE_CPE ||
                    (type == TYPE_SCE && ac->m4ac.ps == 1)) {
    
                    ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
                }
            }
    
    Alex Converse's avatar
    Alex Converse committed
        } else {
            if (ac->che[type][id])
                ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
    
    /**
     * Configure output channel order based on the current program configuration element.
     *
     * @param   che_pos current channel position configuration
     * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static av_cold int output_configure(AACContext *ac,
    
                                        enum ChannelPosition che_pos[4][MAX_ELEM_ID],
                                        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
                                        int channel_config, enum OCStatus oc_type)
    
        AVCodecContext *avctx = ac->avctx;
    
        if (new_che_pos != che_pos)
    
        memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
    
    
        if (channel_config) {
            for (i = 0; i < tags_per_config[channel_config]; i++) {
    
                if ((ret = che_configure(ac, che_pos,
                                         aac_channel_layout_map[channel_config - 1][i][0],
                                         aac_channel_layout_map[channel_config - 1][i][1],
                                         &channels)))
                    return ret;
    
            memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
    
    
            avctx->channel_layout = aac_channel_layout[channel_config - 1];
        } else {
    
    Robert Swain's avatar
    Robert Swain committed
            /* Allocate or free elements depending on if they are in the
             * current program configuration.
             *
             * Set up default 1:1 output mapping.
             *
             * For a 5.1 stream the output order will be:
             *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
             */
    
            for (i = 0; i < MAX_ELEM_ID; i++) {
                for (type = 0; type < 4; type++) {
    
                    if ((ret = che_configure(ac, che_pos, type, i, &channels)))
                        return ret;
    
            memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
    
        avctx->channels = channels;
    
    /**
     * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
     *
     * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
     * @param sce_map mono (Single Channel Element) map
     * @param type speaker type/position for these channels
     */
    static void decode_channel_map(enum ChannelPosition *cpe_map,
    
                                   enum ChannelPosition *sce_map,
                                   enum ChannelPosition type,
                                   GetBitContext *gb, int n)
    {
        while (n--) {
    
            enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
            map[get_bits(gb, 4)] = type;
        }
    }
    
    /**
     * Decode program configuration element; reference: table 4.2.
     *
     * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
                          enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
    
                          GetBitContext *gb)
    {
    
        int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
    
        int comment_len;
    
    
        skip_bits(gb, 2);  // object_type
    
    
        if (m4ac->sampling_index != sampling_index)
            av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
    
        num_front       = get_bits(gb, 4);
        num_side        = get_bits(gb, 4);
        num_back        = get_bits(gb, 4);
        num_lfe         = get_bits(gb, 2);
        num_assoc_data  = get_bits(gb, 3);
        num_cc          = get_bits(gb, 4);
    
    
        if (get_bits1(gb))
            skip_bits(gb, 4); // mono_mixdown_tag
        if (get_bits1(gb))
            skip_bits(gb, 4); // stereo_mixdown_tag
    
        if (get_bits1(gb))
            skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
    
        decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
        decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
        decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
        decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
    
    
        skip_bits_long(gb, 4 * num_assoc_data);
    
    
        decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
    
    
        align_get_bits(gb);
    
        /* comment field, first byte is length */
    
        comment_len = get_bits(gb, 8) * 8;
        if (get_bits_left(gb) < comment_len) {
    
            av_log(avctx, AV_LOG_ERROR, overread_err);
    
            return -1;
        }
        skip_bits_long(gb, comment_len);
    
    /**
     * Set up channel positions based on a default channel configuration
     * as specified in table 1.17.
     *
     * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static av_cold int set_default_channel_config(AVCodecContext *avctx,
    
                                                  enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
                                                  int channel_config)
    
        if (channel_config < 1 || channel_config > 7) {
    
            av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
    
                   channel_config);
            return -1;
        }
    
        /* default channel configurations:
         *
         * 1ch : front center (mono)
         * 2ch : L + R (stereo)
         * 3ch : front center + L + R
         * 4ch : front center + L + R + back center
         * 5ch : front center + L + R + back stereo
         * 6ch : front center + L + R + back stereo + LFE
         * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
         */
    
    
        if (channel_config != 2)
    
            new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
    
        if (channel_config > 1)
    
            new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
    
        if (channel_config == 4)
    
            new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
    
        if (channel_config > 4)
    
            new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
    
            = AAC_CHANNEL_BACK;  // back stereo
        if (channel_config > 5)
    
            new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
    
        if (channel_config == 7)
    
            new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
    
        return 0;
    }
    
    
    /**
     * Decode GA "General Audio" specific configuration; reference: table 4.1.
     *
    
     * @param   ac          pointer to AACContext, may be null
     * @param   avctx       pointer to AVCCodecContext, used for logging
     *
    
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
                                         GetBitContext *gb,
    
                                         int channel_config)
    {
    
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
        int extension_flag, ret;
    
    
        if (get_bits1(gb)) { // frameLengthFlag
    
            av_log_missing_feature(avctx, "960/120 MDCT window is", 1);
    
            return -1;
        }
    
        if (get_bits1(gb))       // dependsOnCoreCoder
            skip_bits(gb, 14);   // coreCoderDelay
        extension_flag = get_bits1(gb);
    
    
        if (m4ac->object_type == AOT_AAC_SCALABLE ||
            m4ac->object_type == AOT_ER_AAC_SCALABLE)
    
            skip_bits(gb, 3);     // layerNr
    
        memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
        if (channel_config == 0) {
            skip_bits(gb, 4);  // element_instance_tag
    
            if ((ret = decode_pce(avctx, m4ac, new_che_pos, gb)))
    
                return ret;
        } else {
    
            if ((ret = set_default_channel_config(avctx, new_che_pos, channel_config)))
    
        if (ac && (ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
    
            return ret;
    
        if (extension_flag) {
    
            case AOT_ER_BSAC:
                skip_bits(gb, 5);    // numOfSubFrame
                skip_bits(gb, 11);   // layer_length
                break;
            case AOT_ER_AAC_LC:
            case AOT_ER_AAC_LTP:
            case AOT_ER_AAC_SCALABLE:
            case AOT_ER_AAC_LD:
                skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
    
                                        * aacScalefactorDataResilienceFlag
                                        * aacSpectralDataResilienceFlag
                                        */
    
                break;
    
            }
            skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
        }
        return 0;
    }
    
    /**
     * Decode audio specific configuration; reference: table 1.13.
     *
    
     * @param   ac          pointer to AACContext, may be null
     * @param   avctx       pointer to AVCCodecContext, used for logging
     * @param   m4ac        pointer to MPEG4AudioConfig, used for parsing
    
     * @param   data        pointer to AVCodecContext extradata
     * @param   data_size   size of AVCCodecContext extradata
     *
    
     * @return  Returns error status or number of consumed bits. <0 - error
    
    static int decode_audio_specific_config(AACContext *ac,
    
                                            AVCodecContext *avctx,
                                            MPEG4AudioConfig *m4ac,
    
                                            const uint8_t *data, int data_size)
    
        GetBitContext gb;
        int i;
    
    
        av_dlog(avctx, "extradata size %d\n", avctx->extradata_size);
        for (i = 0; i < avctx->extradata_size; i++)
             av_dlog(avctx, "%02x ", avctx->extradata[i]);
        av_dlog(avctx, "\n");
    
    
        init_get_bits(&gb, data, data_size * 8);
    
    
        if ((i = ff_mpeg4audio_get_config(m4ac, data, data_size)) < 0)
    
            av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
    
        if (m4ac->sbr == 1 && m4ac->ps == -1)
            m4ac->ps = 1;
    
    
        skip_bits_long(&gb, i);
    
    
        case AOT_AAC_LC:
    
        case AOT_AAC_LTP:
    
            if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
    
                return -1;
            break;
        default:
    
            av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
    
                   m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
    
        av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
                m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
                m4ac->sample_rate, m4ac->sbr, m4ac->ps);
    
    
        return get_bits_count(&gb);
    
    /**
     * linear congruential pseudorandom number generator
     *
     * @param   previous_val    pointer to the current state of the generator
     *
     * @return  Returns a 32-bit pseudorandom integer
     */
    
    static av_always_inline int lcg_random(int previous_val)
    {
    
        return previous_val * 1664525 + 1013904223;
    }
    
    
    static av_always_inline void reset_predict_state(PredictorState *ps)
    
    {
        ps->r0   = 0.0f;
        ps->r1   = 0.0f;
    
        ps->cor0 = 0.0f;
        ps->cor1 = 0.0f;
        ps->var0 = 1.0f;
        ps->var1 = 1.0f;
    }
    
    
    static void reset_all_predictors(PredictorState *ps)
    {
    
        int i;
        for (i = 0; i < MAX_PREDICTORS; i++)
            reset_predict_state(&ps[i]);
    }
    
    
    static void reset_predictor_group(PredictorState *ps, int group_num)
    {
    
        for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
    
    #define AAC_INIT_VLC_STATIC(num, size) \
        INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
             ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
            ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
            size);
    
    
    static av_cold int aac_decode_init(AVCodecContext *avctx)
    
        AACContext *ac = avctx->priv_data;
    
        ac->avctx = avctx;
        ac->m4ac.sample_rate = avctx->sample_rate;
    
        if (avctx->extradata_size > 0) {
    
            if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
                                             avctx->extradata,
                                             avctx->extradata_size) < 0)
    
        if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
            avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
            output_scale_factor = 1.0 / 32768.0;
        } else {
            avctx->sample_fmt = AV_SAMPLE_FMT_S16;
            output_scale_factor = 1.0;
        }
    
        AAC_INIT_VLC_STATIC( 0, 304);
        AAC_INIT_VLC_STATIC( 1, 270);
        AAC_INIT_VLC_STATIC( 2, 550);
        AAC_INIT_VLC_STATIC( 3, 300);
        AAC_INIT_VLC_STATIC( 4, 328);
        AAC_INIT_VLC_STATIC( 5, 294);
        AAC_INIT_VLC_STATIC( 6, 306);
        AAC_INIT_VLC_STATIC( 7, 268);
        AAC_INIT_VLC_STATIC( 8, 510);
        AAC_INIT_VLC_STATIC( 9, 366);
        AAC_INIT_VLC_STATIC(10, 462);
    
    Alex Converse's avatar
    Alex Converse committed
        ff_aac_sbr_init();
    
    
        dsputil_init(&ac->dsp, avctx);
    
        ff_fmt_convert_init(&ac->fmt_conv, avctx);
    
        ac->random_state = 0x1f2e3d4c;
    
    
        ff_aac_tableinit();
    
        INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
    
                        ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
                        ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
                        352);
    
        ff_mdct_init(&ac->mdct,       11, 1, output_scale_factor/1024.0);
        ff_mdct_init(&ac->mdct_small,  8, 1, output_scale_factor/128.0);
        ff_mdct_init(&ac->mdct_ltp,   11, 0, -2.0/output_scale_factor);
    
        // window initialization
        ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
        ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
    
        ff_init_ff_sine_windows(10);
        ff_init_ff_sine_windows( 7);
    
    /**
     * Skip data_stream_element; reference: table 4.10.
     */
    
    static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
    
        int byte_align = get_bits1(gb);
        int count = get_bits(gb, 8);
        if (count == 255)
            count += get_bits(gb, 8);
        if (byte_align)
            align_get_bits(gb);
    
    
        if (get_bits_left(gb) < 8 * count) {
    
            av_log(ac->avctx, AV_LOG_ERROR, overread_err);
    
        skip_bits_long(gb, 8 * count);
    
    static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
                                 GetBitContext *gb)
    {
    
        int sfb;
        if (get_bits1(gb)) {
            ics->predictor_reset_group = get_bits(gb, 5);
            if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
    
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
    
                return -1;
            }
        }
        for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
            ics->prediction_used[sfb] = get_bits1(gb);
        }
        return 0;
    }
    
    
    /**
     * Decode Long Term Prediction data; reference: table 4.xx.
     */
    static void decode_ltp(AACContext *ac, LongTermPrediction *ltp,
                           GetBitContext *gb, uint8_t max_sfb)
    {
        int sfb;
    
        ltp->lag  = get_bits(gb, 11);
    
        ltp->coef = ltp_coef[get_bits(gb, 3)];
    
        for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
            ltp->used[sfb] = get_bits1(gb);
    }
    
    
    /**
     * Decode Individual Channel Stream info; reference: table 4.6.
     *
     * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
     */
    
    static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
                               GetBitContext *gb, int common_window)
    {
    
        if (get_bits1(gb)) {
    
            av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
    
            memset(ics, 0, sizeof(IndividualChannelStream));
            return -1;
        }
        ics->window_sequence[1] = ics->window_sequence[0];
        ics->window_sequence[0] = get_bits(gb, 2);
    
        ics->use_kb_window[1]   = ics->use_kb_window[0];
        ics->use_kb_window[0]   = get_bits1(gb);
        ics->num_window_groups  = 1;
        ics->group_len[0]       = 1;
    
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            int i;
            ics->max_sfb = get_bits(gb, 4);
            for (i = 0; i < 7; i++) {
                if (get_bits1(gb)) {
    
                    ics->group_len[ics->num_window_groups - 1]++;
    
                } else {
                    ics->num_window_groups++;
    
                    ics->group_len[ics->num_window_groups - 1] = 1;
    
            ics->num_windows       = 8;
            ics->swb_offset        =    ff_swb_offset_128[ac->m4ac.sampling_index];
            ics->num_swb           =   ff_aac_num_swb_128[ac->m4ac.sampling_index];
            ics->tns_max_bands     = ff_tns_max_bands_128[ac->m4ac.sampling_index];
    
        } else {
    
            ics->max_sfb               = get_bits(gb, 6);
            ics->num_windows           = 1;
            ics->swb_offset            =    ff_swb_offset_1024[ac->m4ac.sampling_index];
            ics->num_swb               =   ff_aac_num_swb_1024[ac->m4ac.sampling_index];
            ics->tns_max_bands         = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
            ics->predictor_present     = get_bits1(gb);
    
            ics->predictor_reset_group = 0;
            if (ics->predictor_present) {
                if (ac->m4ac.object_type == AOT_AAC_MAIN) {
                    if (decode_prediction(ac, ics, gb)) {
                        memset(ics, 0, sizeof(IndividualChannelStream));
                        return -1;
                    }
                } else if (ac->m4ac.object_type == AOT_AAC_LC) {
    
                    av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
    
                    memset(ics, 0, sizeof(IndividualChannelStream));
                    return -1;
                } else {
    
                    if ((ics->ltp.present = get_bits(gb, 1)))
                        decode_ltp(ac, &ics->ltp, gb, ics->max_sfb);
    
        if (ics->max_sfb > ics->num_swb) {
    
            av_log(ac->avctx, AV_LOG_ERROR,
    
                   "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
                   ics->max_sfb, ics->num_swb);
    
            memset(ics, 0, sizeof(IndividualChannelStream));
            return -1;
        }
    
    
        return 0;
    }
    
    /**
     * Decode band types (section_data payload); reference: table 4.46.
     *
     * @param   band_type           array of the used band type
     * @param   band_type_run_end   array of the last scalefactor band of a band type run
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_band_types(AACContext *ac, enum BandType band_type[120],
                                 int band_type_run_end[120], GetBitContext *gb,
                                 IndividualChannelStream *ics)
    {
    
        int g, idx = 0;
        const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
        for (g = 0; g < ics->num_window_groups; g++) {
            int k = 0;
            while (k < ics->max_sfb) {
    
                int sect_len_incr;
                int sect_band_type = get_bits(gb, 4);
                if (sect_band_type == 12) {
    
                    av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
    
                while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
    
                    sect_end += sect_len_incr;
                sect_end += sect_len_incr;
    
                    av_log(ac->avctx, AV_LOG_ERROR, overread_err);
    
                    av_log(ac->avctx, AV_LOG_ERROR,
    
                           "Number of bands (%d) exceeds limit (%d).\n",
    
                    band_type        [idx]   = sect_band_type;
    
    /**
     * Decode scalefactors; reference: table 4.47.
    
     *
     * @param   global_gain         first scalefactor value as scalefactors are differentially coded
     * @param   band_type           array of the used band type
     * @param   band_type_run_end   array of the last scalefactor band of a band type run
     * @param   sf                  array of scalefactors or intensity stereo positions
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
                                   unsigned int global_gain,
                                   IndividualChannelStream *ics,
                                   enum BandType band_type[120],
                                   int band_type_run_end[120])
    {
    
        int offset[3] = { global_gain, global_gain - 90, 0 };
        int clipped_offset;
    
        int noise_flag = 1;
        static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb;) {
                int run_end = band_type_run_end[idx];
                if (band_type[idx] == ZERO_BT) {
    
                    for (; i < run_end; i++, idx++)
    
                } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                    for (; i < run_end; i++, idx++) {
    
                        offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
    
                        clipped_offset = av_clip(offset[2], -155, 100);
                        if (offset[2] != clipped_offset) {
                            av_log_ask_for_sample(ac->avctx, "Intensity stereo "
                                    "position clipped (%d -> %d).\nIf you heard an "
                                    "audible artifact, there may be a bug in the "
                                    "decoder. ", offset[2], clipped_offset);
    
                        sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
    
                } else if (band_type[idx] == NOISE_BT) {
                    for (; i < run_end; i++, idx++) {
                        if (noise_flag-- > 0)
    
                            offset[1] += get_bits(gb, 9) - 256;
                        else
                            offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
    
                        clipped_offset = av_clip(offset[1], -100, 155);
    
                        if (offset[1] != clipped_offset) {
    
                            av_log_ask_for_sample(ac->avctx, "Noise gain clipped "
                                    "(%d -> %d).\nIf you heard an audible "
                                    "artifact, there may be a bug in the decoder. ",
                                    offset[1], clipped_offset);
    
                        sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
    
                } else {
                    for (; i < run_end; i++, idx++) {
    
                        offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
    
                        if (offset[0] > 255U) {
    
                            av_log(ac->avctx, AV_LOG_ERROR,
    
                                   "%s (%d) out of range.\n", sf_str[0], offset[0]);
    
                        sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
    
    static int decode_pulses(Pulse *pulse, GetBitContext *gb,
                             const uint16_t *swb_offset, int num_swb)
    {
    
        pulse->num_pulse = get_bits(gb, 2) + 1;
    
        pulse_swb        = get_bits(gb, 6);
        if (pulse_swb >= num_swb)
            return -1;
        pulse->pos[0]    = swb_offset[pulse_swb];
    
        pulse->amp[0]    = get_bits(gb, 4);
        for (i = 1; i < pulse->num_pulse; i++) {
    
            pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
    
            pulse->amp[i] = get_bits(gb, 4);
    
    /**
     * Decode Temporal Noise Shaping data; reference: table 4.48.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
                          GetBitContext *gb, const IndividualChannelStream *ics)
    {
    
        int w, filt, i, coef_len, coef_res, coef_compress;
        const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
        const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
        for (w = 0; w < ics->num_windows; w++) {
    
            if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
    
                coef_res = get_bits1(gb);
    
    
    Robert Swain's avatar
    Robert Swain committed
                for (filt = 0; filt < tns->n_filt[w]; filt++) {
                    int tmp2_idx;
    
                    tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
    
                    if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
    
                        av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
    
    Robert Swain's avatar
    Robert Swain committed
                               tns->order[w][filt], tns_max_order);
                        tns->order[w][filt] = 0;
                        return -1;
                    }
    
    Robert Swain's avatar
    Robert Swain committed
                        tns->direction[w][filt] = get_bits1(gb);
                        coef_compress = get_bits1(gb);
                        coef_len = coef_res + 3 - coef_compress;
    
                        tmp2_idx = 2 * coef_compress + coef_res;
    
    Robert Swain's avatar
    Robert Swain committed
                        for (i = 0; i < tns->order[w][filt]; i++)
                            tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
    
    /**
     * Decode Mid/Side data; reference: table 4.54.
     *
     * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
     *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
     *                      [3] reserved for scalable AAC
     */
    
    static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
                                       int ms_present)
    {
    
        int idx;
        if (ms_present == 1) {
            for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
                cpe->ms_mask[idx] = get_bits1(gb);
        } else if (ms_present == 2) {
            memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
        }
    }
    
    static inline float *VMUL2(float *dst, const float *v, unsigned idx,
                               const float *scale)
    {
        float s = *scale;
        *dst++ = v[idx    & 15] * s;
        *dst++ = v[idx>>4 & 15] * s;
        return dst;
    }
    
    static inline float *VMUL4(float *dst, const float *v, unsigned idx,
                               const float *scale)
    {
        float s = *scale;
        *dst++ = v[idx    & 3] * s;
        *dst++ = v[idx>>2 & 3] * s;
        *dst++ = v[idx>>4 & 3] * s;
        *dst++ = v[idx>>6 & 3] * s;
        return dst;
    }
    
    #ifndef VMUL2S
    
    static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
                                unsigned sign, const float *scale)
    {
        union float754 s0, s1;
    
        s0.f = s1.f = *scale;
        s0.i ^= sign >> 1 << 31;
        s1.i ^= sign      << 31;
    
        *dst++ = v[idx    & 15] * s0.f;
        *dst++ = v[idx>>4 & 15] * s1.f;
    
        return dst;
    }
    
    #ifndef VMUL4S
    
    static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
                                unsigned sign, const float *scale)
    {
        unsigned nz = idx >> 12;
        union float754 s = { .f = *scale };
        union float754 t;
    
    
        t.i = s.i ^ (sign & 1U<<31);
    
        *dst++ = v[idx    & 3] * t.f;
    
        sign <<= nz & 1; nz >>= 1;
    
        t.i = s.i ^ (sign & 1U<<31);
    
        *dst++ = v[idx>>2 & 3] * t.f;
    
        sign <<= nz & 1; nz >>= 1;
    
        t.i = s.i ^ (sign & 1U<<31);
    
        *dst++ = v[idx>>4 & 3] * t.f;
    
        sign <<= nz & 1; nz >>= 1;
    
        t.i = s.i ^ (sign & 1U<<31);
    
        *dst++ = v[idx>>6 & 3] * t.f;
    
        return dst;
    }
    
    /**
     * Decode spectral data; reference: table 4.50.