Skip to content
Snippets Groups Projects
aac.c 53.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC decoder
     * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
     * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file aac.c
     * AAC decoder
     * @author Oded Shimon  ( ods15 ods15 dyndns org )
     * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
     */
    
    /*
     * supported tools
     *
     * Support?             Name
     * N (code in SoC repo) gain control
     * Y                    block switching
     * Y                    window shapes - standard
     * N                    window shapes - Low Delay
     * Y                    filterbank - standard
     * N (code in SoC repo) filterbank - Scalable Sample Rate
     * Y                    Temporal Noise Shaping
     * N (code in SoC repo) Long Term Prediction
     * Y                    intensity stereo
     * Y                    channel coupling
     * N                    frequency domain prediction
     * Y                    Perceptual Noise Substitution
     * Y                    Mid/Side stereo
     * N                    Scalable Inverse AAC Quantization
     * N                    Frequency Selective Switch
     * N                    upsampling filter
     * Y                    quantization & coding - AAC
     * N                    quantization & coding - TwinVQ
     * N                    quantization & coding - BSAC
     * N                    AAC Error Resilience tools
     * N                    Error Resilience payload syntax
     * N                    Error Protection tool
     * N                    CELP
     * N                    Silence Compression
     * N                    HVXC
     * N                    HVXC 4kbits/s VR
     * N                    Structured Audio tools
     * N                    Structured Audio Sample Bank Format
     * N                    MIDI
     * N                    Harmonic and Individual Lines plus Noise
     * N                    Text-To-Speech Interface
     * N (in progress)      Spectral Band Replication
     * Y (not in this code) Layer-1
     * Y (not in this code) Layer-2
     * Y (not in this code) Layer-3
     * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
     * N (planned)          Parametric Stereo
     * N                    Direct Stream Transfer
     *
     * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
     *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
               Parametric Stereo.
     */
    
    
    #include "avcodec.h"
    #include "bitstream.h"
    #include "dsputil.h"
    
    
    #include "aac.h"
    #include "aactab.h"
    
    #include "mpeg4audio.h"
    
    #include <assert.h>
    #include <errno.h>
    #include <math.h>
    #include <string.h>
    
    static VLC vlc_scalefactors;
    static VLC vlc_spectral[11];
    
    
    
    /**
     * Configure output channel order based on the current program configuration element.
     *
     * @param   che_pos current channel position configuration
     * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
        AVCodecContext *avctx = ac->avccontext;
        int i, type, channels = 0;
    
        if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
            return 0; /* no change */
    
        memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
    
        /* Allocate or free elements depending on if they are in the
         * current program configuration.
         *
         * Set up default 1:1 output mapping.
         *
         * For a 5.1 stream the output order will be:
    
         *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
    
         */
    
        for(i = 0; i < MAX_ELEM_ID; i++) {
            for(type = 0; type < 4; type++) {
                if(che_pos[type][i]) {
                    if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
                        return AVERROR(ENOMEM);
                    if(type != TYPE_CCE) {
                        ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
                        if(type == TYPE_CPE) {
                            ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
                        }
                    }
                } else
                    av_freep(&ac->che[type][i]);
            }
        }
    
        avctx->channels = channels;
        return 0;
    }
    
    
    /**
     * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
     *
     * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
     * @param sce_map mono (Single Channel Element) map
     * @param type speaker type/position for these channels
     */
    static void decode_channel_map(enum ChannelPosition *cpe_map,
            enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
        while(n--) {
            enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
            map[get_bits(gb, 4)] = type;
        }
    }
    
    /**
     * Decode program configuration element; reference: table 4.2.
     *
     * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
            GetBitContext * gb) {
        int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
    
        skip_bits(gb, 2);  // object_type
    
        ac->m4ac.sampling_index = get_bits(gb, 4);
        if(ac->m4ac.sampling_index > 11) {
            av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
            return -1;
        }
        ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
    
        num_front       = get_bits(gb, 4);
        num_side        = get_bits(gb, 4);
        num_back        = get_bits(gb, 4);
        num_lfe         = get_bits(gb, 2);
        num_assoc_data  = get_bits(gb, 3);
        num_cc          = get_bits(gb, 4);
    
    
        if (get_bits1(gb))
            skip_bits(gb, 4); // mono_mixdown_tag
        if (get_bits1(gb))
            skip_bits(gb, 4); // stereo_mixdown_tag
    
        if (get_bits1(gb))
            skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
    
        decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
        decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
        decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
        decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
    
    
        skip_bits_long(gb, 4 * num_assoc_data);
    
    
        decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
    
    
        align_get_bits(gb);
    
        /* comment field, first byte is length */
        skip_bits_long(gb, 8 * get_bits(gb, 8));
    
    /**
     * Set up channel positions based on a default channel configuration
     * as specified in table 1.17.
     *
     * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
            int channel_config)
    {
        if(channel_config < 1 || channel_config > 7) {
            av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
                   channel_config);
            return -1;
        }
    
        /* default channel configurations:
         *
         * 1ch : front center (mono)
         * 2ch : L + R (stereo)
         * 3ch : front center + L + R
         * 4ch : front center + L + R + back center
         * 5ch : front center + L + R + back stereo
         * 6ch : front center + L + R + back stereo + LFE
         * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
         */
    
        if(channel_config != 2)
            new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
        if(channel_config > 1)
            new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
        if(channel_config == 4)
            new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
        if(channel_config > 4)
            new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
                                     = AAC_CHANNEL_BACK;  // back stereo
        if(channel_config > 5)
            new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
        if(channel_config == 7)
            new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
    
        return 0;
    }
    
    
    /**
     * Decode GA "General Audio" specific configuration; reference: table 4.1.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
        int extension_flag, ret;
    
        if(get_bits1(gb)) {  // frameLengthFlag
            av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
    
            return -1;
        }
    
        if (get_bits1(gb))       // dependsOnCoreCoder
            skip_bits(gb, 14);   // coreCoderDelay
        extension_flag = get_bits1(gb);
    
        if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
           ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
            skip_bits(gb, 3);     // layerNr
    
        memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
        if (channel_config == 0) {
            skip_bits(gb, 4);  // element_instance_tag
            if((ret = decode_pce(ac, new_che_pos, gb)))
                return ret;
        } else {
            if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
                return ret;
        }
        if((ret = output_configure(ac, ac->che_pos, new_che_pos)))
            return ret;
    
        if (extension_flag) {
            switch (ac->m4ac.object_type) {
                case AOT_ER_BSAC:
                    skip_bits(gb, 5);    // numOfSubFrame
                    skip_bits(gb, 11);   // layer_length
                    break;
                case AOT_ER_AAC_LC:
                case AOT_ER_AAC_LTP:
                case AOT_ER_AAC_SCALABLE:
                case AOT_ER_AAC_LD:
                    skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
                                        * aacScalefactorDataResilienceFlag
                                        * aacSpectralDataResilienceFlag
                                        */
                    break;
            }
            skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
        }
        return 0;
    }
    
    /**
     * Decode audio specific configuration; reference: table 1.13.
     *
     * @param   data        pointer to AVCodecContext extradata
     * @param   data_size   size of AVCCodecContext extradata
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
        GetBitContext gb;
        int i;
    
        init_get_bits(&gb, data, data_size * 8);
    
        if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
            return -1;
        if(ac->m4ac.sampling_index > 11) {
            av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
            return -1;
        }
    
        skip_bits_long(&gb, i);
    
        switch (ac->m4ac.object_type) {
        case AOT_AAC_LC:
            if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
                return -1;
            break;
        default:
            av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
                   ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
            return -1;
        }
        return 0;
    }
    
    
    /**
     * linear congruential pseudorandom number generator
     *
     * @param   previous_val    pointer to the current state of the generator
     *
     * @return  Returns a 32-bit pseudorandom integer
     */
    static av_always_inline int lcg_random(int previous_val) {
        return previous_val * 1664525 + 1013904223;
    }
    
    
    static av_cold int aac_decode_init(AVCodecContext * avccontext) {
        AACContext * ac = avccontext->priv_data;
        int i;
    
        ac->avccontext = avccontext;
    
    
        if (avccontext->extradata_size <= 0 ||
            decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
            return -1;
    
    
        avccontext->sample_fmt  = SAMPLE_FMT_S16;
    
        avccontext->sample_rate = ac->m4ac.sample_rate;
        avccontext->frame_size  = 1024;
    
        AAC_INIT_VLC_STATIC( 0, 144);
        AAC_INIT_VLC_STATIC( 1, 114);
        AAC_INIT_VLC_STATIC( 2, 188);
        AAC_INIT_VLC_STATIC( 3, 180);
        AAC_INIT_VLC_STATIC( 4, 172);
        AAC_INIT_VLC_STATIC( 5, 140);
        AAC_INIT_VLC_STATIC( 6, 168);
        AAC_INIT_VLC_STATIC( 7, 114);
        AAC_INIT_VLC_STATIC( 8, 262);
        AAC_INIT_VLC_STATIC( 9, 248);
        AAC_INIT_VLC_STATIC(10, 384);
    
        dsputil_init(&ac->dsp, avccontext);
    
    
        ac->random_state = 0x1f2e3d4c;
    
    
        // -1024 - Compensate wrong IMDCT method.
        // 32768 - Required to scale values to the correct range for the bias method
        //         for float to int16 conversion.
    
        if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
            ac->add_bias = 385.0f;
            ac->sf_scale = 1. / (-1024. * 32768.);
            ac->sf_offset = 0;
        } else {
            ac->add_bias = 0.0f;
            ac->sf_scale = 1. / -1024.;
            ac->sf_offset = 60;
        }
    
    #ifndef CONFIG_HARDCODED_TABLES
    
        for (i = 0; i < 316; i++)
            ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
    
    #endif /* CONFIG_HARDCODED_TABLES */
    
        INIT_VLC_STATIC(&vlc_scalefactors, 7, sizeof(ff_aac_scalefactor_code)/sizeof(ff_aac_scalefactor_code[0]),
            ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
            ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
            352);
    
        ff_mdct_init(&ac->mdct, 11, 1);
        ff_mdct_init(&ac->mdct_small, 8, 1);
    
        // window initialization
        ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
        ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
        ff_sine_window_init(ff_sine_1024, 1024);
        ff_sine_window_init(ff_sine_128, 128);
    
    
    /**
     * Skip data_stream_element; reference: table 4.10.
     */
    static void skip_data_stream_element(GetBitContext * gb) {
    
        int byte_align = get_bits1(gb);
        int count = get_bits(gb, 8);
        if (count == 255)
            count += get_bits(gb, 8);
        if (byte_align)
            align_get_bits(gb);
        skip_bits_long(gb, 8 * count);
    }
    
    
    /**
     * Decode Individual Channel Stream info; reference: table 4.6.
     *
     * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
     */
    static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
        if (get_bits1(gb)) {
            av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
            memset(ics, 0, sizeof(IndividualChannelStream));
            return -1;
        }
        ics->window_sequence[1] = ics->window_sequence[0];
        ics->window_sequence[0] = get_bits(gb, 2);
        ics->use_kb_window[1] = ics->use_kb_window[0];
        ics->use_kb_window[0] = get_bits1(gb);
        ics->num_window_groups = 1;
        ics->group_len[0] = 1;
    
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            int i;
            ics->max_sfb = get_bits(gb, 4);
            for (i = 0; i < 7; i++) {
                if (get_bits1(gb)) {
                    ics->group_len[ics->num_window_groups-1]++;
                } else {
                    ics->num_window_groups++;
                    ics->group_len[ics->num_window_groups-1] = 1;
                }
            }
            ics->num_windows   = 8;
            ics->swb_offset    =      swb_offset_128[ac->m4ac.sampling_index];
            ics->num_swb       =  ff_aac_num_swb_128[ac->m4ac.sampling_index];
            ics->tns_max_bands =   tns_max_bands_128[ac->m4ac.sampling_index];
        } else {
            ics->max_sfb       = get_bits(gb, 6);
            ics->num_windows   = 1;
            ics->swb_offset    =     swb_offset_1024[ac->m4ac.sampling_index];
            ics->num_swb       = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
            ics->tns_max_bands =  tns_max_bands_1024[ac->m4ac.sampling_index];
    
            if (get_bits1(gb)) {
                av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
                memset(ics, 0, sizeof(IndividualChannelStream));
                return -1;
            }
        }
    
        if(ics->max_sfb > ics->num_swb) {
            av_log(ac->avccontext, AV_LOG_ERROR,
                "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
                ics->max_sfb, ics->num_swb);
            memset(ics, 0, sizeof(IndividualChannelStream));
            return -1;
        }
    
    
        return 0;
    }
    
    /**
     * Decode band types (section_data payload); reference: table 4.46.
     *
     * @param   band_type           array of the used band type
     * @param   band_type_run_end   array of the last scalefactor band of a band type run
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_band_types(AACContext * ac, enum BandType band_type[120],
    
            int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
        int g, idx = 0;
        const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
        for (g = 0; g < ics->num_window_groups; g++) {
            int k = 0;
            while (k < ics->max_sfb) {
                uint8_t sect_len = k;
                int sect_len_incr;
                int sect_band_type = get_bits(gb, 4);
                if (sect_band_type == 12) {
                    av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
                    return -1;
                }
                while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
                    sect_len += sect_len_incr;
                sect_len += sect_len_incr;
                if (sect_len > ics->max_sfb) {
                    av_log(ac->avccontext, AV_LOG_ERROR,
                        "Number of bands (%d) exceeds limit (%d).\n",
                        sect_len, ics->max_sfb);
                    return -1;
                }
    
                for (; k < sect_len; k++) {
                    band_type        [idx]   = sect_band_type;
                    band_type_run_end[idx++] = sect_len;
                }
    
    /**
     * Decode scalefactors; reference: table 4.47.
    
     *
     * @param   global_gain         first scalefactor value as scalefactors are differentially coded
     * @param   band_type           array of the used band type
     * @param   band_type_run_end   array of the last scalefactor band of a band type run
     * @param   sf                  array of scalefactors or intensity stereo positions
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
    
            unsigned int global_gain, IndividualChannelStream * ics,
    
            enum BandType band_type[120], int band_type_run_end[120]) {
        const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
        int g, i, idx = 0;
        int offset[3] = { global_gain, global_gain - 90, 100 };
        int noise_flag = 1;
        static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb;) {
                int run_end = band_type_run_end[idx];
                if (band_type[idx] == ZERO_BT) {
                    for(; i < run_end; i++, idx++)
                        sf[idx] = 0.;
                }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                    for(; i < run_end; i++, idx++) {
                        offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                        if(offset[2] > 255U) {
                            av_log(ac->avccontext, AV_LOG_ERROR,
                                "%s (%d) out of range.\n", sf_str[2], offset[2]);
                            return -1;
                        }
                        sf[idx]  = ff_aac_pow2sf_tab[-offset[2] + 300];
                    }
                }else if(band_type[idx] == NOISE_BT) {
                    for(; i < run_end; i++, idx++) {
                        if(noise_flag-- > 0)
                            offset[1] += get_bits(gb, 9) - 256;
                        else
                            offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                        if(offset[1] > 255U) {
                            av_log(ac->avccontext, AV_LOG_ERROR,
                                "%s (%d) out of range.\n", sf_str[1], offset[1]);
                            return -1;
                        }
                        sf[idx]  = -ff_aac_pow2sf_tab[ offset[1] + sf_offset];
                    }
                }else {
                    for(; i < run_end; i++, idx++) {
                        offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                        if(offset[0] > 255U) {
                            av_log(ac->avccontext, AV_LOG_ERROR,
                                "%s (%d) out of range.\n", sf_str[0], offset[0]);
                            return -1;
                        }
                        sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
                    }
                }
            }
        }
        return 0;
    }
    
    /**
     * Decode pulse data; reference: table 4.7.
     */
    
    static void decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset) {
    
        int i;
        pulse->num_pulse = get_bits(gb, 2) + 1;
    
        pulse->pos[0]    = swb_offset[get_bits(gb, 6)] + get_bits(gb, 5);
    
        pulse->amp[0]    = get_bits(gb, 4);
        for (i = 1; i < pulse->num_pulse; i++) {
            pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
            pulse->amp[i] = get_bits(gb, 4);
    
    /**
     * Decode Temporal Noise Shaping data; reference: table 4.48.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
            GetBitContext * gb, const IndividualChannelStream * ics) {
        int w, filt, i, coef_len, coef_res, coef_compress;
        const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
        const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
        for (w = 0; w < ics->num_windows; w++) {
    
            if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
    
                coef_res = get_bits1(gb);
    
    
    Robert Swain's avatar
    Robert Swain committed
                for (filt = 0; filt < tns->n_filt[w]; filt++) {
                    int tmp2_idx;
                    tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
    
                    if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
                        av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
                               tns->order[w][filt], tns_max_order);
                        tns->order[w][filt] = 0;
                        return -1;
                    }
    
    Robert Swain's avatar
    Robert Swain committed
                        tns->direction[w][filt] = get_bits1(gb);
                        coef_compress = get_bits1(gb);
                        coef_len = coef_res + 3 - coef_compress;
                        tmp2_idx = 2*coef_compress + coef_res;
    
    Robert Swain's avatar
    Robert Swain committed
                        for (i = 0; i < tns->order[w][filt]; i++)
                            tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
    
    /**
     * Decode Mid/Side data; reference: table 4.54.
     *
     * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
     *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
     *                      [3] reserved for scalable AAC
     */
    static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
            int ms_present) {
    
        int idx;
        if (ms_present == 1) {
            for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
                cpe->ms_mask[idx] = get_bits1(gb);
        } else if (ms_present == 2) {
            memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
        }
    }
    
    /**
     * Decode spectral data; reference: table 4.50.
     * Dequantize and scale spectral data; reference: 4.6.3.3.
     *
     * @param   coef            array of dequantized, scaled spectral data
     * @param   sf              array of scalefactors or intensity stereo positions
     * @param   pulse_present   set if pulses are present
     * @param   pulse           pointer to pulse data struct
     * @param   band_type       array of the used band type
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
            int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
        int i, k, g, idx = 0;
        const int c = 1024/ics->num_windows;
        const uint16_t * offsets = ics->swb_offset;
        float *coef_base = coef;
    
        for (g = 0; g < ics->num_windows; g++)
            memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
    
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb; i++, idx++) {
                const int cur_band_type = band_type[idx];
                const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
                const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
                int group;
                if (cur_band_type == ZERO_BT) {
                    for (group = 0; group < ics->group_len[g]; group++) {
                        memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
                    }
                }else if (cur_band_type == NOISE_BT) {
                    const float scale = sf[idx] / ((offsets[i+1] - offsets[i]) * PNS_MEAN_ENERGY);
                    for (group = 0; group < ics->group_len[g]; group++) {
                        for (k = offsets[i]; k < offsets[i+1]; k++) {
                            ac->random_state  = lcg_random(ac->random_state);
                            coef[group*128+k] = ac->random_state * scale;
                        }
                    }
                }else if (cur_band_type != INTENSITY_BT2 && cur_band_type != INTENSITY_BT) {
                    for (group = 0; group < ics->group_len[g]; group++) {
                        for (k = offsets[i]; k < offsets[i+1]; k += dim) {
                            const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
                            const int coef_tmp_idx = (group << 7) + k;
                            const float *vq_ptr;
                            int j;
                            if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
                                av_log(ac->avccontext, AV_LOG_ERROR,
                                    "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
                                    cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
                                return -1;
                            }
                            vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
                            if (is_cb_unsigned) {
                                for (j = 0; j < dim; j++)
                                    if (vq_ptr[j])
                                        coef[coef_tmp_idx + j] = 1 - 2*(int)get_bits1(gb);
                            }else {
                                for (j = 0; j < dim; j++)
                                    coef[coef_tmp_idx + j] = 1.0f;
                            }
                            if (cur_band_type == ESC_BT) {
                                for (j = 0; j < 2; j++) {
                                    if (vq_ptr[j] == 64.0f) {
                                        int n = 4;
                                        /* The total length of escape_sequence must be < 22 bits according
                                           to the specification (i.e. max is 11111111110xxxxxxxxxx). */
                                        while (get_bits1(gb) && n < 15) n++;
                                        if(n == 15) {
                                            av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
                                            return -1;
                                        }
                                        n = (1<<n) + get_bits(gb, n);
                                        coef[coef_tmp_idx + j] *= cbrtf(fabsf(n)) * n;
                                    }else
                                        coef[coef_tmp_idx + j] *= vq_ptr[j];
                                }
                            }else
                                for (j = 0; j < dim; j++)
                                    coef[coef_tmp_idx + j] *= vq_ptr[j];
                            for (j = 0; j < dim; j++)
                                coef[coef_tmp_idx + j] *= sf[idx];
                        }
                    }
                }
            }
            coef += ics->group_len[g]<<7;
        }
    
        if (pulse_present) {
            for(i = 0; i < pulse->num_pulse; i++){
                float co  = coef_base[ pulse->pos[i] ];
    
                float ico = -pulse->amp[i];
                if (co)
                    ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
    
                coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico;
            }
        }
        return 0;
    }
    
    
     * Decode an individual_channel_stream payload; reference: table 4.44.
     *
     * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
     * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
        Pulse pulse;
        TemporalNoiseShaping * tns = &sce->tns;
        IndividualChannelStream * ics = &sce->ics;
        float * out = sce->coeffs;
        int global_gain, pulse_present = 0;
    
    
        /* This assignment is to silence a GCC warning about the variable being used
         * uninitialized when in fact it always is.
    
         */
        pulse.num_pulse = 0;
    
        global_gain = get_bits(gb, 8);
    
        if (!common_window && !scale_flag) {
            if (decode_ics_info(ac, ics, gb, 0) < 0)
                return -1;
        }
    
        if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
            return -1;
        if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
            return -1;
    
        pulse_present = 0;
        if (!scale_flag) {
            if ((pulse_present = get_bits1(gb))) {
                if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
                    av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
                    return -1;
                }
    
                decode_pulses(&pulse, gb, ics->swb_offset);
    
            }
            if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
                return -1;
            if (get_bits1(gb)) {
                av_log_missing_feature(ac->avccontext, "SSR", 1);
                return -1;
            }
        }
    
    
        if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
    
    /**
     * Mid/Side stereo decoding; reference: 4.6.8.1.3.
     */
    static void apply_mid_side_stereo(ChannelElement * cpe) {
        const IndividualChannelStream * ics = &cpe->ch[0].ics;
        float *ch0 = cpe->ch[0].coeffs;
        float *ch1 = cpe->ch[1].coeffs;
        int g, i, k, group, idx = 0;
        const uint16_t * offsets = ics->swb_offset;
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb; i++, idx++) {
                if (cpe->ms_mask[idx] &&
                    cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
                    for (group = 0; group < ics->group_len[g]; group++) {
                        for (k = offsets[i]; k < offsets[i+1]; k++) {
                            float tmp = ch0[group*128 + k] - ch1[group*128 + k];
                            ch0[group*128 + k] += ch1[group*128 + k];
                            ch1[group*128 + k] = tmp;
                        }
                    }
                }
            }
            ch0 += ics->group_len[g]*128;
            ch1 += ics->group_len[g]*128;
        }
    }
    
    /**
     * intensity stereo decoding; reference: 4.6.8.2.3
     *
     * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
     *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
     *                      [3] reserved for scalable AAC
     */
    static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
        const IndividualChannelStream * ics = &cpe->ch[1].ics;
        SingleChannelElement * sce1 = &cpe->ch[1];
        float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
        const uint16_t * offsets = ics->swb_offset;
        int g, group, i, k, idx = 0;
        int c;
        float scale;
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb;) {
                if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                    const int bt_run_end = sce1->band_type_run_end[idx];
                    for (; i < bt_run_end; i++, idx++) {
                        c = -1 + 2 * (sce1->band_type[idx] - 14);
                        if (ms_present)
                            c *= 1 - 2 * cpe->ms_mask[idx];
                        scale = c * sce1->sf[idx];
                        for (group = 0; group < ics->group_len[g]; group++)
                            for (k = offsets[i]; k < offsets[i+1]; k++)
                                coef1[group*128 + k] = scale * coef0[group*128 + k];
                    }
                } else {
                    int bt_run_end = sce1->band_type_run_end[idx];
                    idx += bt_run_end - i;
                    i    = bt_run_end;
                }
            }
            coef0 += ics->group_len[g]*128;
            coef1 += ics->group_len[g]*128;
        }
    }
    
    
    /**
     * Decode a channel_pair_element; reference: table 4.4.
     *
     * @param   elem_id Identifies the instance of a syntax element.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
        int i, ret, common_window, ms_present = 0;
        ChannelElement * cpe;
    
        cpe = ac->che[TYPE_CPE][elem_id];
        common_window = get_bits1(gb);
        if (common_window) {
            if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
                return -1;
            i = cpe->ch[1].ics.use_kb_window[0];
            cpe->ch[1].ics = cpe->ch[0].ics;
            cpe->ch[1].ics.use_kb_window[1] = i;
            ms_present = get_bits(gb, 2);
            if(ms_present == 3) {
                av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
                return -1;
            } else if(ms_present)
                decode_mid_side_stereo(cpe, gb, ms_present);
        }
        if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
            return ret;
        if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
            return ret;
    
        if (common_window && ms_present)
            apply_mid_side_stereo(cpe);
    
    
        apply_intensity_stereo(cpe, ms_present);
    
    /**
     * Decode coupling_channel_element; reference: table 4.8.
     *
     * @param   elem_id Identifies the instance of a syntax element.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
        int num_gain = 0;
        int c, g, sfb, ret, idx = 0;
        int sign;
        float scale;
        SingleChannelElement * sce = &che->ch[0];
        ChannelCoupling * coup     = &che->coup;
    
    
        coup->coupling_point = 2*get_bits1(gb);
        coup->num_coupled = get_bits(gb, 3);
        for (c = 0; c <= coup->num_coupled; c++) {
            num_gain++;
            coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
            coup->id_select[c] = get_bits(gb, 4);
            if (coup->type[c] == TYPE_CPE) {
                coup->ch_select[c] = get_bits(gb, 2);
                if (coup->ch_select[c] == 3)
                    num_gain++;
            } else
                coup->ch_select[c] = 1;
        }
        coup->coupling_point += get_bits1(gb);
    
        if (coup->coupling_point == 2) {
            av_log(ac->avccontext, AV_LOG_ERROR,
                "Independently switched CCE with 'invalid' domain signalled.\n");
            memset(coup, 0, sizeof(ChannelCoupling));
            return -1;
        }
    
        sign = get_bits(gb, 1);
        scale = pow(2., pow(2., get_bits(gb, 2) - 3));
    
        if ((ret = decode_ics(ac, sce, gb, 0, 0)))
            return ret;
    
        for (c = 0; c < num_gain; c++) {
            int cge = 1;
            int gain = 0;
            float gain_cache = 1.;
            if (c) {
                cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
                gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
                gain_cache = pow(scale, gain);
            }
            for (g = 0; g < sce->ics.num_window_groups; g++)
                for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++)
                    if (sce->band_type[idx] != ZERO_BT) {
                        if (!cge) {
                            int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                            if (t) {
                                int s = 1;
                                if (sign) {
                                    s  -= 2 * (t & 0x1);
                                    t >>= 1;
                                }
                                gain += t;
                                gain_cache = pow(scale, gain) * s;
                            }
                        }
                        coup->gain[c][idx] = gain_cache;
                    }
        }
        return 0;
    }
    
    
    /**
     * Decode Spectral Band Replication extension data; reference: table 4.55.