Skip to content
Snippets Groups Projects
aac.c 53.3 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * @param   crc flag indicating the presence of CRC checksum
     * @param   cnt length of TYPE_FIL syntactic element in bytes
    
     * @return  Returns number of bytes consumed from the TYPE_FIL element.
     */
    static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
        // TODO : sbr_extension implementation
    
        av_log_missing_feature(ac->avccontext, "SBR", 0);
    
        skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
        return cnt;
    }
    
    
    /**
     * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
     *
     * @return  Returns number of bytes consumed.
     */
    static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
        int i;
        int num_excl_chan = 0;
    
        do {
            for (i = 0; i < 7; i++)
                che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
        } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
    
        return num_excl_chan / 7;
    }
    
    
    /**
     * Decode dynamic range information; reference: table 4.52.
     *
     * @param   cnt length of TYPE_FIL syntactic element in bytes
     *
     * @return  Returns number of bytes consumed.
     */
    static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
        int n = 1;
        int drc_num_bands = 1;
        int i;
    
        /* pce_tag_present? */
        if(get_bits1(gb)) {
            che_drc->pce_instance_tag  = get_bits(gb, 4);
            skip_bits(gb, 4); // tag_reserved_bits
            n++;
        }
    
        /* excluded_chns_present? */
        if(get_bits1(gb)) {
            n += decode_drc_channel_exclusions(che_drc, gb);
        }
    
        /* drc_bands_present? */
        if (get_bits1(gb)) {
            che_drc->band_incr            = get_bits(gb, 4);
            che_drc->interpolation_scheme = get_bits(gb, 4);
            n++;
            drc_num_bands += che_drc->band_incr;
            for (i = 0; i < drc_num_bands; i++) {
                che_drc->band_top[i] = get_bits(gb, 8);
                n++;
            }
        }
    
        /* prog_ref_level_present? */
        if (get_bits1(gb)) {
            che_drc->prog_ref_level = get_bits(gb, 7);
            skip_bits1(gb); // prog_ref_level_reserved_bits
            n++;
        }
    
        for (i = 0; i < drc_num_bands; i++) {
            che_drc->dyn_rng_sgn[i] = get_bits1(gb);
            che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
            n++;
        }
    
        return n;
    }
    
    /**
     * Decode extension data (incomplete); reference: table 4.51.
     *
     * @param   cnt length of TYPE_FIL syntactic element in bytes
     *
     * @return Returns number of bytes consumed
     */
    static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
    
        int crc_flag = 0;
        int res = cnt;
        switch (get_bits(gb, 4)) { // extension type
            case EXT_SBR_DATA_CRC:
                crc_flag++;
            case EXT_SBR_DATA:
                res = decode_sbr_extension(ac, gb, crc_flag, cnt);
                break;
            case EXT_DYNAMIC_RANGE:
                res = decode_dynamic_range(&ac->che_drc, gb, cnt);
                break;
            case EXT_FILL:
            case EXT_FILL_DATA:
            case EXT_DATA_ELEMENT:
            default:
                skip_bits_long(gb, 8*cnt - 4);
                break;
        };
        return res;
    }
    
    
    /**
     * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
     *
     * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
     * @param   coef    spectral coefficients
     */
    static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
        const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
    
    Robert Swain's avatar
    Robert Swain committed
        int w, filt, m, i;
    
        int bottom, top, order, start, end, size, inc;
        float lpc[TNS_MAX_ORDER];
    
        for (w = 0; w < ics->num_windows; w++) {
            bottom = ics->num_swb;
            for (filt = 0; filt < tns->n_filt[w]; filt++) {
                top    = bottom;
                bottom = FFMAX(0, top - tns->length[w][filt]);
                order  = tns->order[w][filt];
                if (order == 0)
                    continue;
    
    
                // tns_decode_coef
                compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
    
                start = ics->swb_offset[FFMIN(bottom, mmm)];
                end   = ics->swb_offset[FFMIN(   top, mmm)];
                if ((size = end - start) <= 0)
                    continue;
                if (tns->direction[w][filt]) {
                    inc = -1; start = end - 1;
                } else {
                    inc = 1;
                }
                start += w * 128;
    
                // ar filter
                for (m = 0; m < size; m++, start += inc)
                    for (i = 1; i <= FFMIN(m, order); i++)
    
                        coef[start] -= coef[start - i*inc] * lpc[i-1];
    
    /**
     * Conduct IMDCT and windowing.
     */
    static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
        IndividualChannelStream * ics = &sce->ics;
        float * in = sce->coeffs;
        float * out = sce->ret;
        float * saved = sce->saved;
    
        const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
        const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
        const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
    
        float * buf = ac->buf_mdct;
    
        DECLARE_ALIGNED(16, float, temp[128]);
    
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
                av_log(ac->avccontext, AV_LOG_WARNING,
                       "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
                       "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
    
            for (i = 0; i < 1024; i += 128)
                ff_imdct_half(&ac->mdct_small, buf + i, in + i);
    
    
        /* window overlapping
         * NOTE: To simplify the overlapping code, all 'meaningless' short to long
         * and long to short transitions are considered to be short to short
         * transitions. This leaves just two cases (long to long and short to short)
         * with a little special sauce for EIGHT_SHORT_SEQUENCE.
         */
        if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
            (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
    
            ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
    
            for (i = 0; i < 448; i++)
                out[i] = saved[i] + ac->add_bias;
    
            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
    
                ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
                ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
                ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
                ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
                ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
                memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
    
                ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
    
                for (i = 576; i < 1024; i++)
    
        // buffer update
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
    
            for (i = 0; i < 64; i++)
                saved[i] = temp[64 + i] - ac->add_bias;
            ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
            ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
            ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
            memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    
        } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
    
            memcpy(                    saved,       buf + 512,        448 * sizeof(float));
            memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    
            memcpy(                    saved,       buf + 512,        512 * sizeof(float));
    
    /**
     * Apply dependent channel coupling (applied before IMDCT).
     *
     * @param   index   index into coupling gain array
     */
    static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
        IndividualChannelStream * ics = &cc->ch[0].ics;
        const uint16_t * offsets = ics->swb_offset;
        float * dest = sce->coeffs;
        const float * src = cc->ch[0].coeffs;
        int g, i, group, k, idx = 0;
        if(ac->m4ac.object_type == AOT_AAC_LTP) {
            av_log(ac->avccontext, AV_LOG_ERROR,
                   "Dependent coupling is not supported together with LTP\n");
            return;
        }
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb; i++, idx++) {
                if (cc->ch[0].band_type[idx] != ZERO_BT) {
                    for (group = 0; group < ics->group_len[g]; group++) {
                        for (k = offsets[i]; k < offsets[i+1]; k++) {
                            // XXX dsputil-ize
    
                            dest[group*128+k] += cc->coup.gain[index][idx] * src[group*128+k];
    
                        }
                    }
                }
            }
            dest += ics->group_len[g]*128;
            src  += ics->group_len[g]*128;
        }
    }
    
    /**
     * Apply independent channel coupling (applied after IMDCT).
     *
     * @param   index   index into coupling gain array
     */
    static void apply_independent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
        int i;
        for (i = 0; i < 1024; i++)
    
            sce->ret[i] += cc->coup.gain[index][0] * (cc->ch[0].ret[i] - ac->add_bias);
    
    /**
     * channel coupling transformation interface
     *
     * @param   index   index into coupling gain array
     * @param   apply_coupling_method   pointer to (in)dependent coupling function
     */
    static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
            void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index))
    {
        int c;
        int index = 0;
        ChannelCoupling * coup = &cc->coup;
        for (c = 0; c <= coup->num_coupled; c++) {
            if (ac->che[coup->type[c]][coup->id_select[c]]) {
                if (coup->ch_select[c] != 2) {
                    apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[0], cc, index);
                    if (coup->ch_select[c] != 0)
                        index++;
                }
                if (coup->ch_select[c] != 1)
                    apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[1], cc, index++);
            } else {
                av_log(ac->avccontext, AV_LOG_ERROR,
                       "coupling target %sE[%d] not available\n",
                       coup->type[c] == TYPE_CPE ? "CP" : "SC", coup->id_select[c]);
                break;
            }
        }
    }
    
    /**
     * Convert spectral data to float samples, applying all supported tools as appropriate.
     */
    static void spectral_to_sample(AACContext * ac) {
        int i, type;
        for (i = 0; i < MAX_ELEM_ID; i++) {
            for(type = 0; type < 4; type++) {
                ChannelElement *che = ac->che[type][i];
                if(che) {
                    if(che->coup.coupling_point == BEFORE_TNS)
                        apply_channel_coupling(ac, che, apply_dependent_coupling);
                    if(che->ch[0].tns.present)
                        apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
                    if(che->ch[1].tns.present)
                        apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
                    if(che->coup.coupling_point == BETWEEN_TNS_AND_IMDCT)
                        apply_channel_coupling(ac, che, apply_dependent_coupling);
                    imdct_and_windowing(ac, &che->ch[0]);
                    if(type == TYPE_CPE)
                        imdct_and_windowing(ac, &che->ch[1]);
                    if(che->coup.coupling_point == AFTER_IMDCT)
                        apply_channel_coupling(ac, che, apply_independent_coupling);
    
                }
            }
        }
    }
    
    static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
        AACContext * ac = avccontext->priv_data;
        GetBitContext gb;
        enum RawDataBlockType elem_type;
        int err, elem_id, data_size_tmp;
    
        init_get_bits(&gb, buf, buf_size*8);
    
        // parse
        while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
            elem_id = get_bits(&gb, 4);
            err = -1;
    
            if(elem_type == TYPE_SCE && elem_id == 1 &&
                    !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
                /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
                   instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
                   encountered such a stream, transfer the LFE[0] element to SCE[1] */
                ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
                ac->che[TYPE_LFE][0] = NULL;
            }
    
                if(!ac->che[elem_type][elem_id])
                    return -1;
                if(elem_type != TYPE_CCE)
                    ac->che[elem_type][elem_id]->coup.coupling_point = 4;
            }
    
            switch (elem_type) {
    
            case TYPE_SCE:
                err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
                break;
    
            case TYPE_CPE:
                err = decode_cpe(ac, &gb, elem_id);
                break;
    
            case TYPE_CCE:
    
    Robert Swain's avatar
    Robert Swain committed
                err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
    
                break;
    
            case TYPE_LFE:
                err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
                break;
    
            case TYPE_DSE:
                skip_data_stream_element(&gb);
                err = 0;
                break;
    
            case TYPE_PCE:
            {
                enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
                memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
                if((err = decode_pce(ac, new_che_pos, &gb)))
                    break;
                err = output_configure(ac, ac->che_pos, new_che_pos);
                break;
            }
    
            case TYPE_FIL:
                if (elem_id == 15)
                    elem_id += get_bits(&gb, 8) - 1;
                while (elem_id > 0)
                    elem_id -= decode_extension_payload(ac, &gb, elem_id);
                err = 0; /* FIXME */
                break;
    
            default:
                err = -1; /* should not happen, but keeps compiler happy */
                break;
            }
    
            if(err)
                return err;
        }
    
        spectral_to_sample(ac);
    
    
        if (!ac->is_saved) {
            ac->is_saved = 1;
            *data_size = 0;
    
        }
    
        data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
        if(*data_size < data_size_tmp) {
            av_log(avccontext, AV_LOG_ERROR,
                   "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
                   *data_size, data_size_tmp);
            return -1;
        }
        *data_size = data_size_tmp;
    
        ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
    
        return buf_size;
    }
    
    
    static av_cold int aac_decode_close(AVCodecContext * avccontext) {
        AACContext * ac = avccontext->priv_data;
    
            for(type = 0; type < 4; type++)
                av_freep(&ac->che[type][i]);
    
        }
    
        ff_mdct_end(&ac->mdct);
        ff_mdct_end(&ac->mdct_small);
        return 0 ;
    }
    
    AVCodec aac_decoder = {
        "aac",
        CODEC_TYPE_AUDIO,
        CODEC_ID_AAC,
        sizeof(AACContext),
        aac_decode_init,
        NULL,
        aac_decode_close,
        aac_decode_frame,
        .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
    
        .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},