Skip to content
Snippets Groups Projects
aaccoder.c 39.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC coefficients encoder
     * Copyright (C) 2008-2009 Konstantin Shishkov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
    
     * AAC coefficients encoder
     */
    
    /***********************************
     *              TODOs:
     * speedup quantizer selection
     * add sane pulse detection
     ***********************************/
    
    
    #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
    
    
    #include "libavutil/mathematics.h"
    
    #include "avcodec.h"
    #include "put_bits.h"
    #include "aac.h"
    #include "aacenc.h"
    #include "aactab.h"
    
    #include "aacenc_quantization.h"
    
    #include "aac_tablegen_decl.h"
    
    #include "aacenc_tns.h"
    
    #include "aacenc_pred.h"
    
    /** Frequency in Hz for lower limit of noise substitution **/
    
    #define NOISE_LOW_LIMIT 4500
    
    /* Energy spread threshold value below which no PNS is used, this corresponds to
     * typically around 17Khz, after which PNS usage decays ending at 19Khz */
    #define NOISE_SPREAD_THRESHOLD 0.5f
    
    /* This constant gets divided by lambda to return ~1.65 which when multiplied
     * by the band->threshold and compared to band->energy is the boundary between
     * excessive PNS and little PNS usage. */
    #define NOISE_LAMBDA_NUMERATOR 252.1f
    
    /**
     * structure used in optimal codebook search
     */
    typedef struct BandCodingPath {
        int prev_idx; ///< pointer to the previous path point
        float cost;   ///< path cost
        int run;
    } BandCodingPath;
    
    /**
     * Encode band info for single window group bands.
     */
    static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
                                         int win, int group_len, const float lambda)
    {
    
    Mans Rullgard's avatar
    Mans Rullgard committed
        int w, swb, cb, start, size;
    
        const int max_sfb  = sce->ics.max_sfb;
    
        const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
    
        const int run_esc  = (1 << run_bits) - 1;
    
        int idx, ppos, count;
        int stackrun[120], stackcb[120], stack_len;
        float next_minrd = INFINITY;
        int next_mincb = 0;
    
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
        start = win*128;
    
        for (swb = 0; swb < max_sfb; swb++) {
    
            if (sce->zeroes[win*16 + swb]) {
    
                    path[swb+1][cb].cost     = path[swb][cb].cost;
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
    
                float minrd = next_minrd;
                int mincb = next_mincb;
                next_minrd = INFINITY;
                next_mincb = 0;
    
                    float cost_stay_here, cost_get_here;
                    float rd = 0.0f;
    
                    if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
                        cb  < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
                        path[swb+1][cb].prev_idx = -1;
                        path[swb+1][cb].cost     = INFINITY;
                        path[swb+1][cb].run      = path[swb][cb].run + 1;
                        continue;
                    }
    
                    for (w = 0; w < group_len; w++) {
    
                        FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
    
                        rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
                                                 &s->scoefs[start + w*128], size,
    
                                                 sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
    
                                                 lambda / band->threshold, INFINITY, NULL, 0);
    
                    }
                    cost_stay_here = path[swb][cb].cost + rd;
                    cost_get_here  = minrd              + rd + run_bits + 4;
    
                    if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
    
                        != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
    
                        cost_stay_here += run_bits;
                    if (cost_get_here < cost_stay_here) {
                        path[swb+1][cb].prev_idx = mincb;
                        path[swb+1][cb].cost     = cost_get_here;
                        path[swb+1][cb].run      = 1;
                    } else {
                        path[swb+1][cb].prev_idx = cb;
                        path[swb+1][cb].cost     = cost_stay_here;
                        path[swb+1][cb].run      = path[swb][cb].run + 1;
                    }
                    if (path[swb+1][cb].cost < next_minrd) {
                        next_minrd = path[swb+1][cb].cost;
                        next_mincb = cb;
                    }
                }
            }
            start += sce->ics.swb_sizes[swb];
        }
    
        //convert resulting path from backward-linked list
        stack_len = 0;
    
            if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
    
            cb = idx;
            stackrun[stack_len] = path[ppos][cb].run;
            stackcb [stack_len] = cb;
            idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
            ppos -= path[ppos][cb].run;
            stack_len++;
        }
        //perform actual band info encoding
        start = 0;
    
        for (i = stack_len - 1; i >= 0; i--) {
    
            cb = aac_cb_out_map[stackcb[i]];
            put_bits(&s->pb, 4, cb);
    
            memset(sce->zeroes + win*16 + start, !cb, count);
    
            //XXX: memset when band_type is also uint8_t
    
            for (j = 0; j < count; j++) {
    
                sce->band_type[win*16 + start] = cb;
    
                put_bits(&s->pb, run_bits, run_esc);
                count -= run_esc;
            }
            put_bits(&s->pb, run_bits, count);
        }
    }
    
    
    static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
                                      int win, int group_len, const float lambda)
    {
    
    Mans Rullgard's avatar
    Mans Rullgard committed
        int w, swb, cb, start, size;
    
        int i, j;
        const int max_sfb  = sce->ics.max_sfb;
        const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
        const int run_esc  = (1 << run_bits) - 1;
        int idx, ppos, count;
        int stackrun[120], stackcb[120], stack_len;
    
        int next_mincb = 0;
    
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
        start = win*128;
    
            path[0][cb].cost     = run_bits+4;
            path[0][cb].prev_idx = -1;
            path[0][cb].run      = 0;
        }
        for (swb = 0; swb < max_sfb; swb++) {
            size = sce->ics.swb_sizes[swb];
            if (sce->zeroes[win*16 + swb]) {
    
                float cost_stay_here = path[swb][0].cost;
    
                float cost_get_here  = next_minbits + run_bits + 4;
    
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
                    cost_stay_here += run_bits;
                if (cost_get_here < cost_stay_here) {
                    path[swb+1][0].prev_idx = next_mincb;
                    path[swb+1][0].cost     = cost_get_here;
                    path[swb+1][0].run      = 1;
                } else {
                    path[swb+1][0].prev_idx = 0;
                    path[swb+1][0].cost     = cost_stay_here;
                    path[swb+1][0].run      = path[swb][0].run + 1;
                }
    
                    path[swb+1][cb].cost = 61450;
                    path[swb+1][cb].prev_idx = -1;
                    path[swb+1][cb].run = 0;
    
                int mincb = next_mincb;
                int startcb = sce->band_type[win*16+swb];
    
                startcb = aac_cb_in_map[startcb];
    
                next_mincb = 0;
                for (cb = 0; cb < startcb; cb++) {
                    path[swb+1][cb].cost = 61450;
                    path[swb+1][cb].prev_idx = -1;
                    path[swb+1][cb].run = 0;
                }
    
                for (cb = startcb; cb < CB_TOT_ALL; cb++) {
    
                    float cost_stay_here, cost_get_here;
    
                    if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
    
                        path[swb+1][cb].cost = 61450;
                        path[swb+1][cb].prev_idx = -1;
                        path[swb+1][cb].run = 0;
                        continue;
                    }
    
                    for (w = 0; w < group_len; w++) {
    
                        bits += quantize_band_cost(s, &sce->coeffs[start + w*128],
                                                   &s->scoefs[start + w*128], size,
    
                                                   sce->sf_idx[win*16+swb],
    
                                                   0, INFINITY, NULL, 0);
    
                    cost_stay_here = path[swb][cb].cost + bits;
                    cost_get_here  = minbits            + bits + run_bits + 4;
    
                    if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
                        != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
                        cost_stay_here += run_bits;
                    if (cost_get_here < cost_stay_here) {
                        path[swb+1][cb].prev_idx = mincb;
                        path[swb+1][cb].cost     = cost_get_here;
                        path[swb+1][cb].run      = 1;
                    } else {
                        path[swb+1][cb].prev_idx = cb;
                        path[swb+1][cb].cost     = cost_stay_here;
                        path[swb+1][cb].run      = path[swb][cb].run + 1;
                    }
    
                    if (path[swb+1][cb].cost < next_minbits) {
                        next_minbits = path[swb+1][cb].cost;
    
                        next_mincb = cb;
                    }
                }
            }
            start += sce->ics.swb_sizes[swb];
        }
    
        //convert resulting path from backward-linked list
        stack_len = 0;
        idx       = 0;
    
            if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
                idx = cb;
        ppos = max_sfb;
        while (ppos > 0) {
    
            av_assert1(idx >= 0);
    
            cb = idx;
            stackrun[stack_len] = path[ppos][cb].run;
            stackcb [stack_len] = cb;
            idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
            ppos -= path[ppos][cb].run;
            stack_len++;
        }
        //perform actual band info encoding
        start = 0;
        for (i = stack_len - 1; i >= 0; i--) {
    
            cb = aac_cb_out_map[stackcb[i]];
            put_bits(&s->pb, 4, cb);
    
            memset(sce->zeroes + win*16 + start, !cb, count);
    
            //XXX: memset when band_type is also uint8_t
            for (j = 0; j < count; j++) {
    
                sce->band_type[win*16 + start] = cb;
    
                start++;
            }
            while (count >= run_esc) {
                put_bits(&s->pb, run_bits, run_esc);
                count -= run_esc;
            }
            put_bits(&s->pb, run_bits, count);
        }
    }
    
    
    typedef struct TrellisPath {
        float cost;
        int prev;
    } TrellisPath;
    
    
    #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
    
    static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
    {
        int w, g, start = 0;
        int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
        int bands = 0;
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            start = 0;
            for (g = 0;  g < sce->ics.num_swb; g++) {
                if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
                    sce->sf_idx[w*16+g] = av_clip(ceilf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
                    minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
                    bands++;
                } else if (sce->band_type[w*16+g] == NOISE_BT) {
                    sce->sf_idx[w*16+g] = av_clip(4+log2f(sce->pns_ener[w*16+g])*2, -100, 155);
                    minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
                    bands++;
                }
                start += sce->ics.swb_sizes[g];
            }
        }
    
        if (!bands)
            return;
    
        /* Clip the scalefactor indices */
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0;  g < sce->ics.num_swb; g++) {
                if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
                } else if (sce->band_type[w*16+g] == NOISE_BT) {
                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
                }
            }
        }
    }
    
    
    static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
        TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
        int bandaddr[TRELLIS_STAGES];
    
        float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
        int q0, q1, qcnt = 0;
    
        for (i = 0; i < 1024; i++) {
            float t = fabsf(sce->coeffs[i]);
            if (t > 0.0f) {
                q0f = FFMIN(q0f, t);
                q1f = FFMAX(q1f, t);
                qnrgf += t*t;
                qcnt++;
            }
        }
    
        if (!qcnt) {
            memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
            memset(sce->zeroes, 1, sizeof(sce->zeroes));
            return;
        }
    
        //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
    
        q0 = coef2minsf(q0f);
    
        //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
    
        q1 = coef2maxsf(q1f);
    
        if (q1 - q0 > 60) {
            int q0low  = q0;
            int q1high = q1;
            //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
    
            int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
    
            q1 = qnrg + 30;
            q0 = qnrg - 30;
            if (q0 < q0low) {
                q1 += q0low - q0;
                q0  = q0low;
            } else if (q1 > q1high) {
                q0 -= q1 - q1high;
                q1  = q1high;
            }
        }
    
        for (i = 0; i < TRELLIS_STATES; i++) {
    
            paths[0][i].cost    = 0.0f;
            paths[0][i].prev    = -1;
    
        for (j = 1; j < TRELLIS_STAGES; j++) {
            for (i = 0; i < TRELLIS_STATES; i++) {
    
                paths[j][i].cost    = INFINITY;
                paths[j][i].prev    = -2;
            }
    
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                const float *coefs = &sce->coeffs[start];
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    if (band->energy <= band->threshold || band->threshold == 0.0f) {
    
                        sce->zeroes[(w+w2)*16+g] = 1;
                        continue;
                    }
                    sce->zeroes[(w+w2)*16+g] = 0;
                    nz = 1;
    
                    for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
    
                            qmin = FFMIN(qmin, t);
                        qmax = FFMAX(qmax, t);
    
                    int minscale, maxscale;
                    float minrd = INFINITY;
    
                    float maxval;
    
                    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
    
                    minscale = coef2minsf(qmin);
    
                    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
    
                    maxscale = coef2maxsf(qmax);
    
                    minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
                    maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
    
                    maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
    
                    for (q = minscale; q < maxscale; q++) {
    
                        int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
    
                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                            FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                            dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
    
                                                       q + q0, cb, lambda / band->threshold, INFINITY, NULL, 0);
    
                            cost = paths[idx - 1][i].cost + dist
    
                                   + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
    
                                paths[idx][q].cost    = cost;
                                paths[idx][q].prev    = i;
    
    Alex Converse's avatar
    Alex Converse committed
                        paths[idx][q].cost = paths[idx - 1][q].cost + 1;
                        paths[idx][q].prev = q;
    
                    }
                }
                sce->zeroes[w*16+g] = !nz;
                start += sce->ics.swb_sizes[g];
    
        idx--;
        mincost = paths[idx][0].cost;
        minq    = 0;
    
        for (i = 1; i < TRELLIS_STATES; i++) {
    
            if (paths[idx][i].cost < mincost) {
                mincost = paths[idx][i].cost;
                minq = i;
    
            sce->sf_idx[bandaddr[idx]] = minq + q0;
    
        }
        //set the same quantizers inside window groups
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
            for (g = 0;  g < sce->ics.num_swb; g++)
                for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
    
                    sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
    }
    
    /**
     * two-loop quantizers search taken from ISO 13818-7 Appendix C
     */
    
    static void search_for_quantizers_twoloop(AVCodecContext *avctx,
                                              AACEncContext *s,
                                              SingleChannelElement *sce,
                                              const float lambda)
    
        int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
    
        float dists[128] = { 0 }, uplims[128] = { 0 };
    
        // for values above this the decoder might end up in an endless loop
        // due to always having more bits than what can be encoded.
        destbits = FFMIN(destbits, 5800);
    
        //XXX: some heuristic to determine initial quantizers will reduce search time
        //determine zero bands and upper limits
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0;  g < sce->ics.num_swb; g++) {
    
                float uplim = 0.0f, energy = 0.0f;
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    if (band->energy <= band->threshold || band->threshold == 0.0f) {
    
                        sce->zeroes[(w+w2)*16+g] = 1;
                        continue;
                    }
                    nz = 1;
                }
                uplims[w*16+g] = uplim *512;
                sce->zeroes[w*16+g] = !nz;
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0;  g < sce->ics.num_swb; g++) {
                if (sce->zeroes[w*16+g]) {
    
                    sce->sf_idx[w*16+g] = SCALE_ONE_POS;
                    continue;
                }
    
                sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
    
            return;
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
    
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            start = w*128;
            for (g = 0;  g < sce->ics.num_swb; g++) {
                const float *scaled = s->scoefs + start;
                maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
                start += sce->ics.swb_sizes[g];
            }
        }
    
    
        //perform two-loop search
        //outer loop - improve quality
    
            int tbits, qstep;
            minscaler = sce->sf_idx[0];
            //inner loop - quantize spectrum to fit into given number of bits
            qstep = its ? 1 : 32;
    
                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
                    for (g = 0;  g < sce->ics.num_swb; g++) {
    
                        const float *coefs = &sce->coeffs[start];
                        const float *scaled = &s->scoefs[start];
    
                        if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
    
                        minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
    
                        cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
    
    Alex Converse's avatar
    Alex Converse committed
                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                            int b;
                            dist += quantize_band_cost(s, coefs + w2*128,
                                                       scaled + w2*128,
                                                       sce->ics.swb_sizes[g],
                                                       sce->sf_idx[w*16+g],
                                                       cb,
    
    Alex Converse's avatar
    Alex Converse committed
                                                       INFINITY,
    
    Alex Converse's avatar
    Alex Converse committed
                            bits += b;
                        }
    
                        dists[w*16+g] = dist - bits;
    
                        if (prev != -1) {
    
                            bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
                        }
                        tbits += bits;
                        start += sce->ics.swb_sizes[g];
                        prev = sce->sf_idx[w*16+g];
                    }
                }
    
                if (tbits > destbits) {
    
                    for (i = 0; i < 128; i++)
                        if (sce->sf_idx[i] < 218 - qstep)
    
                    for (i = 0; i < 128; i++)
                        if (sce->sf_idx[i] > 60 - qstep)
    
                if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
    
    
            fflag = 0;
            minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
    
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
                for (g = 0; g < sce->ics.num_swb; g++) {
    
                    if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
    
                        if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
    
    Young Han Lee's avatar
    Young Han Lee committed
                            sce->sf_idx[w*16+g]--;
    
                        else //Try to make sure there is some energy in every band
                            sce->sf_idx[w*16+g]-=2;
                    }
    
                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
                    sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
    
                    if (sce->sf_idx[w*16+g] != prevsc)
    
                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
    
        } while (fflag && its < 10);
    
    }
    
    static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
    {
        int start = 0, i, w, w2, g;
        float uplim[128], maxq[128];
        int minq, maxsf;
        float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
        int last = 0, lastband = 0, curband = 0;
        float avg_energy = 0.0;
    
        if (sce->ics.num_windows == 1) {
    
            for (i = 0; i < 1024; i++) {
                if (i - start >= sce->ics.swb_sizes[curband]) {
    
                    start += sce->ics.swb_sizes[curband];
                    curband++;
                }
    
                if (sce->coeffs[i]) {
    
                    avg_energy += sce->coeffs[i] * sce->coeffs[i];
                    last = i;
                    lastband = curband;
                }
            }
    
        } else {
            for (w = 0; w < 8; w++) {
    
                const float *coeffs = &sce->coeffs[w*128];
    
                curband = start = 0;
    
                for (i = 0; i < 128; i++) {
                    if (i - start >= sce->ics.swb_sizes[curband]) {
    
                        start += sce->ics.swb_sizes[curband];
                        curband++;
                    }
    
                    if (coeffs[i]) {
    
                        avg_energy += coeffs[i] * coeffs[i];
                        last = FFMAX(last, i);
                        lastband = FFMAX(lastband, curband);
                    }
                }
            }
        }
        last++;
        avg_energy /= last;
    
        if (avg_energy == 0.0f) {
            for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                float *coefs   = &sce->coeffs[start];
    
                const int size = sce->ics.swb_sizes[g];
                int start2 = start, end2 = start + size, peakpos = start;
                float maxval = -1, thr = 0.0f, t;
                maxq[w*16+g] = 0.0f;
    
                if (g > lastband) {
    
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
    
                        memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
                    continue;
                }
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                    for (i = 0; i < size; i++) {
    
                        float t = coefs[w2*128+i]*coefs[w2*128+i];
    
                        maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
    
                        if (sce->ics.num_windows == 1 && maxval < t) {
    
                if (sce->ics.num_windows == 1) {
    
                    start2 = FFMAX(peakpos - 2, start2);
                    end2   = FFMIN(peakpos + 3, end2);
    
                    start2 -= start;
                    end2   -= start;
                }
                start += size;
                thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
    
                t   = 1.0 - (1.0 * start2 / last);
    
                uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
            }
        }
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0;  g < sce->ics.num_swb; g++) {
    
                const float *coefs  = &sce->coeffs[start];
                const float *scaled = &s->scoefs[start];
    
                const int size      = sce->ics.swb_sizes[g];
    
                if (maxq[w*16+g] < 21.544) {
    
                    sce->zeroes[w*16+g] = 1;
                    start += size;
                    continue;
                }
                sce->zeroes[w*16+g] = 0;
    
                scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
    
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                        int b;
                        dist += quantize_band_cost(s, coefs + w2*128,
                                                   scaled + w2*128,
                                                   sce->ics.swb_sizes[g],
                                                   scf,
                                                   ESC_BT,
    
    Alex Converse's avatar
    Alex Converse committed
                                                   lambda,
    
    Alex Converse's avatar
    Alex Converse committed
                    dist *= 1.0f / 512.0f / lambda;
    
                    quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
    
                    if (quant_max >= 8191) { // too much, return to the previous quantizer
    
                        sce->sf_idx[w*16+g] = prev_scf;
                        break;
                    }
                    prev_scf = scf;
                    curdiff = fabsf(dist - uplim[w*16+g]);
    
                    if (dist > uplim[w*16+g])
    
                    scf = av_clip_uint8(scf);
    
                    if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
    
                        sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
    
                    if (step > 0)
    
                }
                start += size;
            }
        }
        minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
    
        for (i = 1; i < 128; i++) {
            if (!sce->sf_idx[i])
    
                sce->sf_idx[i] = sce->sf_idx[i-1];
            else
                minq = FFMIN(minq, sce->sf_idx[i]);
        }
    
        if (minq == INT_MAX)
            minq = 0;
    
        minq = FFMIN(minq, SCALE_MAX_POS);
        maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
    
        for (i = 126; i >= 0; i--) {
            if (!sce->sf_idx[i])
    
                sce->sf_idx[i] = sce->sf_idx[i+1];
            sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
        }
    }
    
    static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
    Mans Rullgard's avatar
    Mans Rullgard committed
        int i, w, w2, g;
    
        int minq = 255;
    
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0; g < sce->ics.num_swb; g++) {
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    if (band->energy <= band->threshold) {
    
                        sce->sf_idx[(w+w2)*16+g] = 218;
                        sce->zeroes[(w+w2)*16+g] = 1;
    
                        sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
    
                        sce->zeroes[(w+w2)*16+g] = 0;
                    }
                    minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
                }
            }
        }
    
        for (i = 0; i < 128; i++) {
    
            sce->sf_idx[i] = 140;
            //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
    
        }
        //set the same quantizers inside window groups
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
            for (g = 0;  g < sce->ics.num_swb; g++)
                for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
    
                    sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
    }
    
    
    static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
    
        const float lambda = s->lambda;
    
        const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
        const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/120.f);
        const float thr_mult = NOISE_LAMBDA_NUMERATOR/lambda;
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            start = 0;
            for (g = 0;  g < sce->ics.num_swb; g++) {
                if (start*freq_mult > NOISE_LOW_LIMIT*(lambda/170.0f)) {
                    float energy = 0.0f, threshold = 0.0f, spread = 0.0f;
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                        FFPsyBand *band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
                        energy += band->energy;
                        threshold += band->threshold;
                        spread += band->spread;
                    }
                    if (spread > spread_threshold*sce->ics.group_len[w] &&
                        ((sce->zeroes[w*16+g] && energy >= threshold) ||
                        energy < threshold*thr_mult*sce->ics.group_len[w])) {
                        sce->band_type[w*16+g] = NOISE_BT;
                        sce->pns_ener[w*16+g] = energy / sce->ics.group_len[w];
                        sce->zeroes[w*16+g] = 0;
                    }
                }
                start += sce->ics.swb_sizes[g];
            }
        }
    }
    
    
    static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
    
    {
        int start = 0, i, w, w2, g;
        float M[128], S[128];
        float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
    
        const float lambda = s->lambda;
    
        SingleChannelElement *sce0 = &cpe->ch[0];
        SingleChannelElement *sce1 = &cpe->ch[1];
    
        if (!cpe->common_window)
    
        for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
    
            start = 0;
    
            for (g = 0;  g < sce0->ics.num_swb; g++) {
    
                if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
    
                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
    
                        FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
                        FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
    
                        float minthr = FFMIN(band0->threshold, band1->threshold);
                        float maxthr = FFMAX(band0->threshold, band1->threshold);
    
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
    
                            M[i] = (sce0->coeffs[start+(w+w2)*128+i]
                                  + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
    
                                  - sce1->coeffs[start+(w+w2)*128+i];
    
                        abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
                        abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
    
                        abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
                        abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
    
                        dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
    
                                                    L34,
                                                    sce0->ics.swb_sizes[g],
                                                    sce0->sf_idx[(w+w2)*16+g],
                                                    sce0->band_type[(w+w2)*16+g],
    
                                                    lambda / band0->threshold, INFINITY, NULL, 0);
    
                        dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
    
                                                    R34,
                                                    sce1->ics.swb_sizes[g],
                                                    sce1->sf_idx[(w+w2)*16+g],
                                                    sce1->band_type[(w+w2)*16+g],
    
                                                    lambda / band1->threshold, INFINITY, NULL, 0);
    
                        dist2 += quantize_band_cost(s, M,
                                                    M34,
                                                    sce0->ics.swb_sizes[g],
                                                    sce0->sf_idx[(w+w2)*16+g],
                                                    sce0->band_type[(w+w2)*16+g],
    
                                                    lambda / maxthr, INFINITY, NULL, 0);
    
                        dist2 += quantize_band_cost(s, S,
                                                    S34,
                                                    sce1->ics.swb_sizes[g],
                                                    sce1->sf_idx[(w+w2)*16+g],
                                                    sce1->band_type[(w+w2)*16+g],
    
                                                    lambda / minthr, INFINITY, NULL, 0);
    
                    }
                    cpe->ms_mask[w*16+g] = dist2 < dist1;
                }
                start += sce0->ics.swb_sizes[g];
            }
        }
    }
    
    
    AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
    
        [AAC_CODER_FAAC] = {
    
    Alex Converse's avatar
    Alex Converse committed
            encode_window_bands_info,
    
            encode_main_pred,
            adjust_common_prediction,
            apply_main_pred,
            update_main_pred,
    
        [AAC_CODER_ANMR] = {
    
            search_for_quantizers_anmr,
            encode_window_bands_info,
            quantize_and_encode_band,
    
            encode_main_pred,
            adjust_common_prediction,
            apply_main_pred,
            update_main_pred,
    
        [AAC_CODER_TWOLOOP] = {
    
            encode_main_pred,
            adjust_common_prediction,
            apply_main_pred,
            update_main_pred,