Skip to content
Snippets Groups Projects
aaccoder.c 39.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC coefficients encoder
     * Copyright (C) 2008-2009 Konstantin Shishkov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file libavcodec/aaccoder.c
     * AAC coefficients encoder
     */
    
    /***********************************
     *              TODOs:
     * speedup quantizer selection
     * add sane pulse detection
     ***********************************/
    
    #include "avcodec.h"
    #include "put_bits.h"
    #include "aac.h"
    #include "aacenc.h"
    #include "aactab.h"
    
    /** bits needed to code codebook run value for long windows */
    static const uint8_t run_value_bits_long[64] = {
         5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
         5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
        10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
        10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
    };
    
    /** bits needed to code codebook run value for short windows */
    static const uint8_t run_value_bits_short[16] = {
        3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
    };
    
    
    static const uint8_t *run_value_bits[2] = {
    
        run_value_bits_long, run_value_bits_short
    };
    
    
    /**
     * Quantize one coefficient.
     * @return absolute value of the quantized coefficient
     * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
     */
    static av_always_inline int quant(float coef, const float Q)
    {
        return pow(coef * Q, 0.75) + 0.4054;
    }
    
    
    static void quantize_bands(int (*out)[2], const float *in, const float *scaled,
                               int size, float Q34, int is_signed, int maxval)
    
    {
        int i;
        double qc;
        for (i = 0; i < size; i++) {
            qc = scaled[i] * Q34;
    
            out[i][0] = (int)FFMIN((int)qc,            maxval);
    
            out[i][1] = (int)FFMIN((int)(qc + 0.4054), maxval);
            if (is_signed && in[i] < 0.0f) {
                out[i][0] = -out[i][0];
                out[i][1] = -out[i][1];
            }
        }
    }
    
    
    static void abs_pow34_v(float *out, const float *in, const int size)
    
        for (i = 0; i < size; i++)
    
            out[i] = pow(fabsf(in[i]), 0.75);
    #endif /* USE_REALLY_FULL_SEARCH */
    }
    
    static av_always_inline int quant2(float coef, const float Q)
    {
        return pow(coef * Q, 0.75);
    }
    
    static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
    static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
    
    /**
     * Calculate rate distortion cost for quantizing with given codebook
     *
     * @return quantization distortion
     */
    
    static float quantize_band_cost(struct AACEncContext *s, const float *in,
                                    const float *scaled, int size, int scale_idx,
                                    int cb, const float lambda, const float uplim,
                                    int *bits)
    
    {
        const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
        const float  Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
        const float CLIPPED_ESCAPE = 165140.0f*IQ;
        int i, j, k;
        float cost = 0;
        const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
        int resbits = 0;
    #ifndef USE_REALLY_FULL_SEARCH
        const float  Q34 = pow(Q, 0.75);
    
        const int range  = aac_cb_range[cb];
    
        const int maxval = aac_cb_maxval[cb];
        int offs[4];
    #endif /* USE_REALLY_FULL_SEARCH */
    
    
        if (!cb) {
            for (i = 0; i < size; i++)
    
                cost += in[i]*in[i]*lambda;
            return cost;
        }
    #ifndef USE_REALLY_FULL_SEARCH
        offs[0] = 1;
    
        for (i = 1; i < dim; i++)
    
            offs[i] = offs[i-1]*range;
        quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
    #endif /* USE_REALLY_FULL_SEARCH */
    
        for (i = 0; i < size; i += dim) {
    
            int minbits = 0;
            const float *vec;
    #ifndef USE_REALLY_FULL_SEARCH
            int (*quants)[2] = &s->qcoefs[i];
            mincost = 0.0f;
    
            for (j = 0; j < dim; j++)
    
                mincost += in[i+j]*in[i+j]*lambda;
            minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
            minbits = ff_aac_spectral_bits[cb-1][minidx];
            mincost += minbits;
    
            for (j = 0; j < (1<<dim); j++) {
    
                float rd = 0.0f;
                int curbits;
                int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
    
                for (k = 0; k < dim; k++) {
                    if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
    
                for (k = 0; k < dim; k++)
    
                    curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
    
                curbits =  ff_aac_spectral_bits[cb-1][curidx];
                vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
    
    #else
            mincost = INFINITY;
            vec = ff_aac_codebook_vectors[cb-1];
    
            for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
    
                float rd = 0.0f;
                int curbits = ff_aac_spectral_bits[cb-1][j];
    #endif /* USE_REALLY_FULL_SEARCH */
    
                if (IS_CODEBOOK_UNSIGNED(cb)) {
                    for (k = 0; k < dim; k++) {
    
                        float t = fabsf(in[i+k]);
                        float di;
                        //do not code with escape sequence small values
    
                        if (vec[k] == 64.0f && t < 39.0f*IQ) {
    
                        if (vec[k] == 64.0f) { //FIXME: slow
    
                            if (t >= CLIPPED_ESCAPE) {
                                di = t - CLIPPED_ESCAPE;
                                curbits += 21;
    
                                int c = av_clip(quant(t, Q), 0, 8191);
                                di = t - c*cbrt(c)*IQ;
                                curbits += av_log2(c)*2 - 4 + 1;
                            }
    
                        if (vec[k] != 0.0f)
    
                } else {
                    for (k = 0; k < dim; k++) {
    
                        float di = in[i+k] - vec[k]*IQ;
                        rd += di*di*lambda;
                    }
                }
                rd += curbits;
    
                if (rd < mincost) {
    
            if (cost >= uplim)
    
    static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
                                         const float *in, int size, int scale_idx,
                                         int cb, const float lambda)
    
    {
        const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
        const float  Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
        const float CLIPPED_ESCAPE = 165140.0f*IQ;
        const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2;
        int i, j, k;
    #ifndef USE_REALLY_FULL_SEARCH
        const float  Q34 = pow(Q, 0.75);
    
        const int range  = aac_cb_range[cb];
    
        const int maxval = aac_cb_maxval[cb];
        int offs[4];
        float *scaled = s->scoefs;
    #endif /* USE_REALLY_FULL_SEARCH */
    
    //START_TIMER
    
            return;
    
    #ifndef USE_REALLY_FULL_SEARCH
        offs[0] = 1;
    
        for (i = 1; i < dim; i++)
    
            offs[i] = offs[i-1]*range;
        abs_pow34_v(scaled, in, size);
        quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
    #endif /* USE_REALLY_FULL_SEARCH */
    
        for (i = 0; i < size; i += dim) {
    
            int minbits = 0;
            const float *vec;
    #ifndef USE_REALLY_FULL_SEARCH
            int (*quants)[2] = &s->qcoefs[i];
            mincost = 0.0f;
    
            for (j = 0; j < dim; j++)
    
                mincost += in[i+j]*in[i+j]*lambda;
            minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
            minbits = ff_aac_spectral_bits[cb-1][minidx];
            mincost += minbits;
    
            for (j = 0; j < (1<<dim); j++) {
    
                float rd = 0.0f;
                int curbits;
                int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
    
                for (k = 0; k < dim; k++) {
                    if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
    
                for (k = 0; k < dim; k++)
    
                    curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
    
                curbits =  ff_aac_spectral_bits[cb-1][curidx];
                vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
    
    #else
            vec = ff_aac_codebook_vectors[cb-1];
            mincost = INFINITY;
    
            for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
    
                float rd = 0.0f;
                int curbits = ff_aac_spectral_bits[cb-1][j];
    
    #endif /* USE_REALLY_FULL_SEARCH */
    
                if (IS_CODEBOOK_UNSIGNED(cb)) {
                    for (k = 0; k < dim; k++) {
    
                        float t = fabsf(in[i+k]);
                        float di;
                        //do not code with escape sequence small values
    
                        if (vec[k] == 64.0f && t < 39.0f*IQ) {
    
                        if (vec[k] == 64.0f) { //FIXME: slow
    
                            if (t >= CLIPPED_ESCAPE) {
                                di = t - CLIPPED_ESCAPE;
                                curbits += 21;
    
                                int c = av_clip(quant(t, Q), 0, 8191);
                                di = t - c*cbrt(c)*IQ;
                                curbits += av_log2(c)*2 - 4 + 1;
                            }
    
                        if (vec[k] != 0.0f)
    
                } else {
                    for (k = 0; k < dim; k++) {
    
                        float di = in[i+k] - vec[k]*IQ;
                        rd += di*di*lambda;
                    }
                }
                rd += curbits;
    
                if (rd < mincost) {
    
                    minbits = curbits;
                }
            }
            put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
    
            if (IS_CODEBOOK_UNSIGNED(cb))
                for (j = 0; j < dim; j++)
                    if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
    
            if (cb == ESC_BT) {
                for (j = 0; j < 2; j++) {
                    if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
    
                        int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
                        int len = av_log2(coef);
    
                        put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
                        put_bits(pb, len, coef & ((1 << len) - 1));
                    }
                }
            }
        }
    //STOP_TIMER("quantize_and_encode")
    }
    
    /**
     * structure used in optimal codebook search
     */
    typedef struct BandCodingPath {
        int prev_idx; ///< pointer to the previous path point
        int codebook; ///< codebook for coding band run
        float cost;   ///< path cost
        int run;
    } BandCodingPath;
    
    /**
     * Encode band info for single window group bands.
     */
    static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
                                         int win, int group_len, const float lambda)
    {
        BandCodingPath path[120][12];
        int w, swb, cb, start, start2, size;
        int i, j;
    
        const int max_sfb  = sce->ics.max_sfb;
    
        const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
    
        const int run_esc  = (1 << run_bits) - 1;
    
        int idx, ppos, count;
        int stackrun[120], stackcb[120], stack_len;
        float next_minrd = INFINITY;
        int next_mincb = 0;
    
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
        start = win*128;
    
        for (cb = 0; cb < 12; cb++) {
    
        for (swb = 0; swb < max_sfb; swb++) {
    
            start2 = start;
            size = sce->ics.swb_sizes[swb];
    
            if (sce->zeroes[win*16 + swb]) {
                for (cb = 0; cb < 12; cb++) {
    
                    path[swb+1][cb].cost     = path[swb][cb].cost;
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
    
                float minrd = next_minrd;
                int mincb = next_mincb;
                next_minrd = INFINITY;
                next_mincb = 0;
    
                for (cb = 0; cb < 12; cb++) {
    
                    float cost_stay_here, cost_get_here;
                    float rd = 0.0f;
    
                    for (w = 0; w < group_len; w++) {
    
                        FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
                        rd += quantize_band_cost(s, sce->coeffs + start + w*128,
                                                 s->scoefs + start + w*128, size,
                                                 sce->sf_idx[(win+w)*16+swb], cb,
                                                 lambda / band->threshold, INFINITY, NULL);
                    }
                    cost_stay_here = path[swb][cb].cost + rd;
                    cost_get_here  = minrd              + rd + run_bits + 4;
    
                    if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
    
                        != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
    
                        cost_stay_here += run_bits;
                    if (cost_get_here < cost_stay_here) {
                        path[swb+1][cb].prev_idx = mincb;
                        path[swb+1][cb].cost     = cost_get_here;
                        path[swb+1][cb].run      = 1;
                    } else {
                        path[swb+1][cb].prev_idx = cb;
                        path[swb+1][cb].cost     = cost_stay_here;
                        path[swb+1][cb].run      = path[swb][cb].run + 1;
                    }
                    if (path[swb+1][cb].cost < next_minrd) {
                        next_minrd = path[swb+1][cb].cost;
                        next_mincb = cb;
                    }
                }
            }
            start += sce->ics.swb_sizes[swb];
        }
    
        //convert resulting path from backward-linked list
        stack_len = 0;
    
        for (cb = 1; cb < 12; cb++)
    
            if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
    
            cb = idx;
            stackrun[stack_len] = path[ppos][cb].run;
            stackcb [stack_len] = cb;
            idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
            ppos -= path[ppos][cb].run;
            stack_len++;
        }
        //perform actual band info encoding
        start = 0;
    
        for (i = stack_len - 1; i >= 0; i--) {
    
            put_bits(&s->pb, 4, stackcb[i]);
            count = stackrun[i];
            memset(sce->zeroes + win*16 + start, !stackcb[i], count);
            //XXX: memset when band_type is also uint8_t
    
            for (j = 0; j < count; j++) {
    
                sce->band_type[win*16 + start] =  stackcb[i];
                start++;
            }
    
                put_bits(&s->pb, run_bits, run_esc);
                count -= run_esc;
            }
            put_bits(&s->pb, run_bits, count);
        }
    }
    
    typedef struct TrellisPath {
        float cost;
        int prev;
        int min_val;
        int max_val;
    } TrellisPath;
    
    static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
    {
        int q, w, w2, g, start = 0;
        int i;
        int idx;
        TrellisPath paths[256*121];
        int bandaddr[121];
        int minq;
        float mincost;
    
    
        for (i = 0; i < 256; i++) {
    
            paths[i].cost    = 0.0f;
            paths[i].prev    = -1;
    
            paths[i].min_val = i;
            paths[i].max_val = i;
        }
    
        for (i = 256; i < 256*121; i++) {
    
            paths[i].cost    = INFINITY;
            paths[i].prev    = -2;
    
            paths[i].min_val = INT_MAX;
            paths[i].max_val = 0;
        }
        idx = 256;
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                const float *coefs = sce->coeffs + start;
                float qmin, qmax;
                int nz = 0;
    
    
                bandaddr[idx >> 8] = w * 16 + g;
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
    
                    if (band->energy <= band->threshold || band->threshold == 0.0f) {
    
                        sce->zeroes[(w+w2)*16+g] = 1;
                        continue;
                    }
                    sce->zeroes[(w+w2)*16+g] = 0;
                    nz = 1;
    
                    for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
    
                        if (t > 0.0f)
                            qmin = fminf(qmin, t);
    
                    int minscale, maxscale;
                    float minrd = INFINITY;
                    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
                    minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
                    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
                    maxscale = av_clip_uint8(log2(qmax)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
    
                    for (q = minscale; q < maxscale; q++) {
    
                        float dists[12], dist;
                        memset(dists, 0, sizeof(dists));
    
                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                            FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
                            int cb;
    
                            for (cb = 0; cb <= ESC_BT; cb++)
    
                                dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
                                                                q, cb, lambda / band->threshold, INFINITY, NULL);
                        }
                        dist = dists[0];
    
                        for (i = 1; i <= ESC_BT; i++)
    
                            dist = fminf(dist, dists[i]);
                        minrd = fminf(minrd, dist);
    
    
                        for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
    
                            if (isinf(paths[idx - 256 + i].cost))
    
                                continue;
                            cost = paths[idx - 256 + i].cost + dist
                                   + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
                            minv = FFMIN(paths[idx - 256 + i].min_val, q);
                            maxv = FFMAX(paths[idx - 256 + i].max_val, q);
    
                            if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
    
                                paths[idx + q].cost    = cost;
                                paths[idx + q].prev    = idx - 256 + i;
    
                                paths[idx + q].min_val = minv;
                                paths[idx + q].max_val = maxv;
                            }
                        }
                    }
    
                } else {
                    for (q = 0; q < 256; q++) {
                        if (!isinf(paths[idx - 256 + q].cost)) {
    
                            paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
                            paths[idx + q].prev = idx - 256 + q;
                            paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
                            paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
                            continue;
                        }
    
                        for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
    
                            if (isinf(paths[idx - 256 + i].cost))
    
                                continue;
                            cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
                            minv = FFMIN(paths[idx - 256 + i].min_val, q);
                            maxv = FFMAX(paths[idx - 256 + i].max_val, q);
    
                            if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
    
                                paths[idx + q].cost    = cost;
                                paths[idx + q].prev    = idx - 256 + i;
    
                                paths[idx + q].min_val = minv;
                                paths[idx + q].max_val = maxv;
                            }
                        }
                    }
                }
                sce->zeroes[w*16+g] = !nz;
                start += sce->ics.swb_sizes[g];
    
        for (i = 1; i < 256; i++) {
            if (paths[idx + i].cost < mincost) {
    
                mincost = paths[idx + i].cost;
                minq = idx + i;
            }
        }
    
            sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
            minq = paths[minq].prev;
        }
        //set the same quantizers inside window groups
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
            for (g = 0;  g < sce->ics.num_swb; g++)
                for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
    
                    sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
    }
    
    /**
     * two-loop quantizers search taken from ISO 13818-7 Appendix C
     */
    
    static void search_for_quantizers_twoloop(AVCodecContext *avctx,
                                              AACEncContext *s,
                                              SingleChannelElement *sce,
                                              const float lambda)
    
    {
        int start = 0, i, w, w2, g;
        int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
        float dists[128], uplims[128];
        int fflag, minscaler;
    
        int allz = 0;
        float minthr = INFINITY;
    
        //XXX: some heuristic to determine initial quantizers will reduce search time
        memset(dists, 0, sizeof(dists));
        //determine zero bands and upper limits
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0;  g < sce->ics.num_swb; g++) {
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
                    uplim += band->threshold;
    
                    if (band->energy <= band->threshold || band->threshold == 0.0f) {
    
                        sce->zeroes[(w+w2)*16+g] = 1;
                        continue;
                    }
                    nz = 1;
                }
                uplims[w*16+g] = uplim *512;
                sce->zeroes[w*16+g] = !nz;
    
                    minthr = fminf(minthr, uplim);
                allz = FFMAX(allz, nz);
            }
        }
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0;  g < sce->ics.num_swb; g++) {
                if (sce->zeroes[w*16+g]) {
    
                    sce->sf_idx[w*16+g] = SCALE_ONE_POS;
                    continue;
                }
                sce->sf_idx[w*16+g] = SCALE_ONE_POS + fminf(log2(uplims[w*16+g]/minthr)*4,59);
            }
        }
    
    
            return;
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
        //perform two-loop search
        //outer loop - improve quality
    
            int tbits, qstep;
            minscaler = sce->sf_idx[0];
            //inner loop - quantize spectrum to fit into given number of bits
            qstep = its ? 1 : 32;
    
                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
                    for (g = 0;  g < sce->ics.num_swb; g++) {
    
                        const float *coefs = sce->coeffs + start;
                        const float *scaled = s->scoefs + start;
                        int bits = 0;
                        int cb;
                        float mindist = INFINITY;
                        int minbits = 0;
    
    
                        if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
    
                            continue;
                        minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
    
                        for (cb = 0; cb <= ESC_BT; cb++) {
    
                            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                                int b;
                                dist += quantize_band_cost(s, coefs + w2*128,
                                                           scaled + w2*128,
                                                           sce->ics.swb_sizes[g],
                                                           sce->sf_idx[w*16+g],
                                                           ESC_BT,
    
    Alex Converse's avatar
    Alex Converse committed
                                                           lambda,
    
                            if (dist < mindist) {
    
    Alex Converse's avatar
    Alex Converse committed
                        dists[w*16+g] = (mindist - minbits) / lambda;
    
                        if (prev != -1) {
    
                            bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
                        }
                        tbits += bits;
                        start += sce->ics.swb_sizes[g];
                        prev = sce->sf_idx[w*16+g];
                    }
                }
    
                if (tbits > destbits) {
    
                    for (i = 0; i < 128; i++)
                        if (sce->sf_idx[i] < 218 - qstep)
    
                    for (i = 0; i < 128; i++)
                        if (sce->sf_idx[i] > 60 - qstep)
    
                if (!qstep && tbits > destbits*1.02)
    
                if (sce->sf_idx[0] >= 217)
                    break;
    
    
            fflag = 0;
            minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
    
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
                for (g = 0; g < sce->ics.num_swb; g++) {
    
                    if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
    
                        sce->sf_idx[w*16+g]--;
                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
                    sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
    
                    if (sce->sf_idx[w*16+g] != prevsc)
    
        } while (fflag && its < 10);
    
    }
    
    static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
    {
        int start = 0, i, w, w2, g;
        float uplim[128], maxq[128];
        int minq, maxsf;
        float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
        int last = 0, lastband = 0, curband = 0;
        float avg_energy = 0.0;
    
        if (sce->ics.num_windows == 1) {
    
            for (i = 0; i < 1024; i++) {
                if (i - start >= sce->ics.swb_sizes[curband]) {
    
                    start += sce->ics.swb_sizes[curband];
                    curband++;
                }
    
                if (sce->coeffs[i]) {
    
                    avg_energy += sce->coeffs[i] * sce->coeffs[i];
                    last = i;
                    lastband = curband;
                }
            }
    
        } else {
            for (w = 0; w < 8; w++) {
    
                const float *coeffs = sce->coeffs + w*128;
                start = 0;
    
                for (i = 0; i < 128; i++) {
                    if (i - start >= sce->ics.swb_sizes[curband]) {
    
                        start += sce->ics.swb_sizes[curband];
                        curband++;
                    }
    
                    if (coeffs[i]) {
    
                        avg_energy += coeffs[i] * coeffs[i];
                        last = FFMAX(last, i);
                        lastband = FFMAX(lastband, curband);
                    }
                }
            }
        }
        last++;
        avg_energy /= last;
    
        if (avg_energy == 0.0f) {
            for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                float *coefs   = sce->coeffs + start;
    
                const int size = sce->ics.swb_sizes[g];
                int start2 = start, end2 = start + size, peakpos = start;
                float maxval = -1, thr = 0.0f, t;
                maxq[w*16+g] = 0.0f;
    
                if (g > lastband) {
    
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
    
                        memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
                    continue;
                }
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                    for (i = 0; i < size; i++) {
    
                        float t = coefs[w2*128+i]*coefs[w2*128+i];
                        maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
                        thr += t;
    
                        if (sce->ics.num_windows == 1 && maxval < t) {
    
                if (sce->ics.num_windows == 1) {
    
                    start2 = FFMAX(peakpos - 2, start2);
                    end2   = FFMIN(peakpos + 3, end2);
    
                    start2 -= start;
                    end2   -= start;
                }
                start += size;
                thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
    
                t   = 1.0 - (1.0 * start2 / last);
    
                uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
            }
        }
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0;  g < sce->ics.num_swb; g++) {
    
                const float *coefs  = sce->coeffs + start;
                const float *scaled = s->scoefs   + start;
                const int size      = sce->ics.swb_sizes[g];
    
                int scf, prev_scf, step;
                int min_scf = 0, max_scf = 255;
                float curdiff;
    
                if (maxq[w*16+g] < 21.544) {
    
                    sce->zeroes[w*16+g] = 1;
                    start += size;
                    continue;
                }
                sce->zeroes[w*16+g] = 0;
    
                scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
    
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                        int b;
                        dist += quantize_band_cost(s, coefs + w2*128,
                                                   scaled + w2*128,
                                                   sce->ics.swb_sizes[g],
                                                   scf,
                                                   ESC_BT,
    
    Alex Converse's avatar
    Alex Converse committed
                                                   lambda,
    
    Alex Converse's avatar
    Alex Converse committed
                    dist *= 1.0f / 512.0f / lambda;
    
                    quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
    
                    if (quant_max >= 8191) { // too much, return to the previous quantizer
    
                        sce->sf_idx[w*16+g] = prev_scf;
                        break;
                    }
                    prev_scf = scf;
                    curdiff = fabsf(dist - uplim[w*16+g]);
    
                    if (curdiff == 0.0f)
    
                        step = 0;
                    else
                        step = fabsf(log2(curdiff));
    
                    if (dist > uplim[w*16+g])
    
                    if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
    
                        sce->sf_idx[w*16+g] = scf;
                        break;
                    }
                    scf += step;
    
                    if (step > 0)
    
                        min_scf = scf;
                    else
                        max_scf = scf;
                }
                start += size;
            }
        }
        minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
    
        for (i = 1; i < 128; i++) {
            if (!sce->sf_idx[i])
    
                sce->sf_idx[i] = sce->sf_idx[i-1];
            else
                minq = FFMIN(minq, sce->sf_idx[i]);
        }
    
        if (minq == INT_MAX)
            minq = 0;
    
        minq = FFMIN(minq, SCALE_MAX_POS);
        maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
    
        for (i = 126; i >= 0; i--) {
            if (!sce->sf_idx[i])
    
                sce->sf_idx[i] = sce->sf_idx[i+1];
            sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
        }
    }
    
    static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
    {
        int start = 0, i, w, w2, g;
        int minq = 255;
    
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
    
                    if (band->energy <= band->threshold) {
    
                        sce->sf_idx[(w+w2)*16+g] = 218;
                        sce->zeroes[(w+w2)*16+g] = 1;
    
                        sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
                        sce->zeroes[(w+w2)*16+g] = 0;
                    }
                    minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
                }
            }
        }
    
        for (i = 0; i < 128; i++) {
    
            sce->sf_idx[i] = 140;
            //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
    
        }
        //set the same quantizers inside window groups
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
            for (g = 0;  g < sce->ics.num_swb; g++)
                for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
    
                    sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
    }
    
    
    static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
                              const float lambda)
    
    {
        int start = 0, i, w, w2, g;
        float M[128], S[128];
        float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
        SingleChannelElement *sce0 = &cpe->ch[0];
        SingleChannelElement *sce1 = &cpe->ch[1];
    
        if (!cpe->common_window)
    
        for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
            for (g = 0;  g < sce0->ics.num_swb; g++) {
                if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
    
                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
    
                        FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
                        FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
                        float minthr = fminf(band0->threshold, band1->threshold);
                        float maxthr = fmaxf(band0->threshold, band1->threshold);
    
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
    
                            M[i] = (sce0->coeffs[start+w2*128+i]
    
                                  + sce1->coeffs[start+w2*128+i]) * 0.5;
    
                            S[i] =  sce0->coeffs[start+w2*128+i]
                                  - sce1->coeffs[start+w2*128+i];
                        }
                        abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
                        abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
                        abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
                        abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
                        dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
                                                    L34,
                                                    sce0->ics.swb_sizes[g],
                                                    sce0->sf_idx[(w+w2)*16+g],
                                                    sce0->band_type[(w+w2)*16+g],
                                                    lambda / band0->threshold, INFINITY, NULL);
                        dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
                                                    R34,
                                                    sce1->ics.swb_sizes[g],
                                                    sce1->sf_idx[(w+w2)*16+g],
                                                    sce1->band_type[(w+w2)*16+g],
                                                    lambda / band1->threshold, INFINITY, NULL);
                        dist2 += quantize_band_cost(s, M,
                                                    M34,
                                                    sce0->ics.swb_sizes[g],
                                                    sce0->sf_idx[(w+w2)*16+g],
                                                    sce0->band_type[(w+w2)*16+g],
                                                    lambda / maxthr, INFINITY, NULL);
                        dist2 += quantize_band_cost(s, S,
                                                    S34,
                                                    sce1->ics.swb_sizes[g],
                                                    sce1->sf_idx[(w+w2)*16+g],
                                                    sce1->band_type[(w+w2)*16+g],