Skip to content
Snippets Groups Projects
aaccoder.c 40 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC coefficients encoder
     * Copyright (C) 2008-2009 Konstantin Shishkov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
    
     * AAC coefficients encoder
     */
    
    /***********************************
     *              TODOs:
     * speedup quantizer selection
     * add sane pulse detection
     ***********************************/
    
    
    #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
    
    
    #include "libavutil/mathematics.h"
    
    #include "mathops.h"
    
    #include "avcodec.h"
    #include "put_bits.h"
    #include "aac.h"
    #include "aacenc.h"
    #include "aactab.h"
    
    #include "aacenc_quantization.h"
    
    #include "aacenc_tns.h"
    
    #include "aacenc_pred.h"
    
    #include "libavcodec/aaccoder_twoloop.h"
    
    
    /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
     * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
    
    #define NOISE_SPREAD_THRESHOLD 0.9f
    
    /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
     * replace low energy non zero bands */
    #define NOISE_LAMBDA_REPLACE 1.948f
    
    #include "libavcodec/aaccoder_trellis.h"
    
    
    /**
     * structure used in optimal codebook search
     */
    typedef struct BandCodingPath {
        int prev_idx; ///< pointer to the previous path point
        float cost;   ///< path cost
        int run;
    } BandCodingPath;
    
    /**
     * Encode band info for single window group bands.
     */
    static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
                                         int win, int group_len, const float lambda)
    {
    
    Mans Rullgard's avatar
    Mans Rullgard committed
        int w, swb, cb, start, size;
    
        const int max_sfb  = sce->ics.max_sfb;
    
        const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
    
        const int run_esc  = (1 << run_bits) - 1;
    
        int idx, ppos, count;
        int stackrun[120], stackcb[120], stack_len;
        float next_minrd = INFINITY;
        int next_mincb = 0;
    
    
        s->abs_pow34(s->scoefs, sce->coeffs, 1024);
    
        for (swb = 0; swb < max_sfb; swb++) {
    
            if (sce->zeroes[win*16 + swb]) {
    
                    path[swb+1][cb].cost     = path[swb][cb].cost;
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
    
                float minrd = next_minrd;
                int mincb = next_mincb;
                next_minrd = INFINITY;
                next_mincb = 0;
    
                    float cost_stay_here, cost_get_here;
                    float rd = 0.0f;
    
                    if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
                        cb  < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
                        path[swb+1][cb].prev_idx = -1;
                        path[swb+1][cb].cost     = INFINITY;
                        path[swb+1][cb].run      = path[swb][cb].run + 1;
                        continue;
                    }
    
                    for (w = 0; w < group_len; w++) {
    
                        FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
    
                        rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
                                                 &s->scoefs[start + w*128], size,
    
                                                 sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
    
                                                 lambda / band->threshold, INFINITY, NULL, NULL, 0);
    
                    }
                    cost_stay_here = path[swb][cb].cost + rd;
                    cost_get_here  = minrd              + rd + run_bits + 4;
    
                    if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
    
                        != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
    
                        cost_stay_here += run_bits;
                    if (cost_get_here < cost_stay_here) {
                        path[swb+1][cb].prev_idx = mincb;
                        path[swb+1][cb].cost     = cost_get_here;
                        path[swb+1][cb].run      = 1;
                    } else {
                        path[swb+1][cb].prev_idx = cb;
                        path[swb+1][cb].cost     = cost_stay_here;
                        path[swb+1][cb].run      = path[swb][cb].run + 1;
                    }
                    if (path[swb+1][cb].cost < next_minrd) {
                        next_minrd = path[swb+1][cb].cost;
                        next_mincb = cb;
                    }
                }
            }
            start += sce->ics.swb_sizes[swb];
        }
    
        //convert resulting path from backward-linked list
        stack_len = 0;
    
            if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
    
            cb = idx;
            stackrun[stack_len] = path[ppos][cb].run;
            stackcb [stack_len] = cb;
            idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
            ppos -= path[ppos][cb].run;
            stack_len++;
        }
        //perform actual band info encoding
        start = 0;
    
        for (i = stack_len - 1; i >= 0; i--) {
    
            cb = aac_cb_out_map[stackcb[i]];
            put_bits(&s->pb, 4, cb);
    
            memset(sce->zeroes + win*16 + start, !cb, count);
    
            //XXX: memset when band_type is also uint8_t
    
            for (j = 0; j < count; j++) {
    
                sce->band_type[win*16 + start] = cb;
    
                put_bits(&s->pb, run_bits, run_esc);
                count -= run_esc;
            }
            put_bits(&s->pb, run_bits, count);
        }
    }
    
    
    typedef struct TrellisPath {
        float cost;
        int prev;
    } TrellisPath;
    
    
    #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
    
    static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
    {
    
        int w, g;
        int prevscaler_n = -255, prevscaler_i = 0;
    
        int bands = 0;
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                if (sce->zeroes[w*16+g])
                    continue;
    
                if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
    
                    sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
    
                    bands++;
                } else if (sce->band_type[w*16+g] == NOISE_BT) {
    
                    sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
    
                    if (prevscaler_n == -255)
                        prevscaler_n = sce->sf_idx[w*16+g];
    
                    bands++;
                }
            }
        }
    
        if (!bands)
            return;
    
        /* Clip the scalefactor indices */
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                if (sce->zeroes[w*16+g])
                    continue;
    
                if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
    
                    sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF);
    
                } else if (sce->band_type[w*16+g] == NOISE_BT) {
    
                    sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF);
    
    static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
        TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
        int bandaddr[TRELLIS_STAGES];
    
        float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
        int q0, q1, qcnt = 0;
    
        for (i = 0; i < 1024; i++) {
            float t = fabsf(sce->coeffs[i]);
            if (t > 0.0f) {
                q0f = FFMIN(q0f, t);
                q1f = FFMAX(q1f, t);
                qnrgf += t*t;
                qcnt++;
            }
        }
    
        if (!qcnt) {
            memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
            memset(sce->zeroes, 1, sizeof(sce->zeroes));
            return;
        }
    
        //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
    
        q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
    
        //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
    
        q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
    
        if (q1 - q0 > 60) {
            int q0low  = q0;
            int q1high = q1;
            //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
    
            int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
    
            q1 = qnrg + 30;
            q0 = qnrg - 30;
            if (q0 < q0low) {
                q1 += q0low - q0;
                q0  = q0low;
            } else if (q1 > q1high) {
                q0 -= q1 - q1high;
                q1  = q1high;
            }
        }
    
        // q0 == q1 isn't really a legal situation
        if (q0 == q1) {
            // the following is indirect but guarantees q1 != q0 && q1 near q0
            q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
            q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
        }
    
        for (i = 0; i < TRELLIS_STATES; i++) {
    
            paths[0][i].cost    = 0.0f;
            paths[0][i].prev    = -1;
    
        for (j = 1; j < TRELLIS_STAGES; j++) {
            for (i = 0; i < TRELLIS_STATES; i++) {
    
                paths[j][i].cost    = INFINITY;
                paths[j][i].prev    = -2;
            }
    
        s->abs_pow34(s->scoefs, sce->coeffs, 1024);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                const float *coefs = &sce->coeffs[start];
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    if (band->energy <= band->threshold || band->threshold == 0.0f) {
    
                        sce->zeroes[(w+w2)*16+g] = 1;
                        continue;
                    }
                    sce->zeroes[(w+w2)*16+g] = 0;
                    nz = 1;
    
                    for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
    
                            qmin = FFMIN(qmin, t);
                        qmax = FFMAX(qmax, t);
    
                    int minscale, maxscale;
                    float minrd = INFINITY;
    
                    float maxval;
    
                    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
    
                    minscale = coef2minsf(qmin);
    
                    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
    
                    maxscale = coef2maxsf(qmax);
    
                    minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
                    maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
    
                    if (minscale == maxscale) {
                        maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
                        minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
                    }
    
                    maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
    
                    for (q = minscale; q < maxscale; q++) {
    
                        int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
    
                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                            FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                            dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
    
                                                       q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
    
                            cost = paths[idx - 1][i].cost + dist
    
                                   + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
    
                                paths[idx][q].cost    = cost;
                                paths[idx][q].prev    = i;
    
    Alex Converse's avatar
    Alex Converse committed
                        paths[idx][q].cost = paths[idx - 1][q].cost + 1;
                        paths[idx][q].prev = q;
    
                    }
                }
                sce->zeroes[w*16+g] = !nz;
                start += sce->ics.swb_sizes[g];
    
        idx--;
        mincost = paths[idx][0].cost;
        minq    = 0;
    
        for (i = 1; i < TRELLIS_STATES; i++) {
    
            if (paths[idx][i].cost < mincost) {
                mincost = paths[idx][i].cost;
                minq = i;
    
            sce->sf_idx[bandaddr[idx]] = minq + q0;
    
            minq = FFMAX(paths[idx][minq].prev, 0);
    
        }
        //set the same quantizers inside window groups
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
    
            for (g = 0; g < sce->ics.num_swb; g++)
    
                for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
    
                    sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
    }
    
    static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
        int start = 0, i, w, w2, g;
        int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
        float dists[128] = { 0 }, uplims[128] = { 0 };
        float maxvals[128];
        int fflag, minscaler;
        int its  = 0;
        int allz = 0;
        float minthr = INFINITY;
    
        // for values above this the decoder might end up in an endless loop
        // due to always having more bits than what can be encoded.
        destbits = FFMIN(destbits, 5800);
    
        //some heuristic to determine initial quantizers will reduce search time
    
        //determine zero bands and upper limits
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                int nz = 0;
                float uplim = 0.0f, energy = 0.0f;
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    uplim += band->threshold;
                    energy += band->energy;
                    if (band->energy <= band->threshold || band->threshold == 0.0f) {
    
                uplims[w*16+g] = uplim *512;
                sce->band_type[w*16+g] = 0;
                sce->zeroes[w*16+g] = !nz;
                if (nz)
                    minthr = FFMIN(minthr, uplim);
                allz |= nz;
                start += sce->ics.swb_sizes[g];
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                if (sce->zeroes[w*16+g]) {
                    sce->sf_idx[w*16+g] = SCALE_ONE_POS;
                    continue;
                }
                sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
            }
    
        s->abs_pow34(s->scoefs, sce->coeffs, 1024);
    
        ff_quantize_band_cost_cache_init(s);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            start = w*128;
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                const float *scaled = s->scoefs + start;
                maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
                start += sce->ics.swb_sizes[g];
            }
        }
    
        //perform two-loop search
        //outer loop - improve quality
        do {
            int tbits, qstep;
            minscaler = sce->sf_idx[0];
            //inner loop - quantize spectrum to fit into given number of bits
            qstep = its ? 1 : 32;
            do {
                int prev = -1;
                tbits = 0;
                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
                    start = w*128;
    
                    for (g = 0; g < sce->ics.num_swb; g++) {
    
                        const float *coefs = sce->coeffs + start;
                        const float *scaled = s->scoefs + start;
                        int bits = 0;
                        int cb;
                        float dist = 0.0f;
    
                        if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
                            start += sce->ics.swb_sizes[g];
                            continue;
                        }
                        minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
                        cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                            int b;
                            dist += quantize_band_cost_cached(s, w + w2, g,
                                                              coefs + w2*128,
                                                              scaled + w2*128,
                                                              sce->ics.swb_sizes[g],
                                                              sce->sf_idx[w*16+g],
                                                              cb, 1.0f, INFINITY,
                                                              &b, NULL, 0);
                            bits += b;
                        }
                        dists[w*16+g] = dist - bits;
                        if (prev != -1) {
                            bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
                        }
                        tbits += bits;
                        start += sce->ics.swb_sizes[g];
                        prev = sce->sf_idx[w*16+g];
                    }
                }
                if (tbits > destbits) {
                    for (i = 0; i < 128; i++)
                        if (sce->sf_idx[i] < 218 - qstep)
                            sce->sf_idx[i] += qstep;
                } else {
                    for (i = 0; i < 128; i++)
                        if (sce->sf_idx[i] > 60 - qstep)
                            sce->sf_idx[i] -= qstep;
                }
                qstep >>= 1;
                if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
                    qstep = 1;
            } while (qstep);
    
            fflag = 0;
            minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
    
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
                for (g = 0; g < sce->ics.num_swb; g++) {
                    int prevsc = sce->sf_idx[w*16+g];
                    if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
                        if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
                            sce->sf_idx[w*16+g]--;
                        else //Try to make sure there is some energy in every band
                            sce->sf_idx[w*16+g]-=2;
                    }
                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
                    sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
                    if (sce->sf_idx[w*16+g] != prevsc)
                        fflag = 1;
                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
                }
            }
            its++;
        } while (fflag && its < 10);
    
    static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
    
        FFPsyBand *band;
    
        int wlen = 1024 / sce->ics.num_windows;
        int bandwidth, cutoff;
    
        float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
        float *NOR34 = &s->scoefs[3*128];
    
        uint8_t nextband[128];
    
        const float lambda = s->lambda;
    
        const float freq_mult = avctx->sample_rate*0.5f/wlen;
    
        const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
    
        const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
        const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
        const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
    
        int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
            / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
            * (lambda / 120.f);
    
        /** Keep this in sync with twoloop's cutoff selection */
        float rate_bandwidth_multiplier = 1.5f;
    
        int prev = -1000, prev_sf = -1;
    
        int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
            ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
            : (avctx->bit_rate / avctx->channels);
    
        frame_bit_rate *= 1.15f;
    
        if (avctx->cutoff > 0) {
            bandwidth = avctx->cutoff;
        } else {
            bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
        }
    
        cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
    
        memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
    
        ff_init_nextband_map(sce, nextband);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            int wstart = w*128;
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
    
                float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
    
                float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
                float min_energy = -1.0f, max_energy = 0.0f;
    
                const int start = wstart+sce->ics.swb_offset[g];
    
                const float freq = (start-wstart)*freq_mult;
    
                const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
    
                if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) {
                    if (!sce->zeroes[w*16+g])
                        prev_sf = sce->sf_idx[w*16+g];
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                    band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    spread     = FFMIN(spread, band->spread);
    
                    if (!w2) {
                        min_energy = max_energy = band->energy;
                    } else {
                        min_energy = FFMIN(min_energy, band->energy);
                        max_energy = FFMAX(max_energy, band->energy);
                    }
    
                /* Ramps down at ~8000Hz and loosens the dist threshold */
    
                dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
    
                /* PNS is acceptable when all of these are true:
                 * 1. high spread energy (noise-like band)
                 * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
                 * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
                 *
                 * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
    
                if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
                    ((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
    
                    (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
                    min_energy < pns_transient_energy_r * max_energy ) {
    
                    sce->pns_ener[w*16+g] = sfb_energy;
    
                    if (!sce->zeroes[w*16+g])
                        prev_sf = sce->sf_idx[w*16+g];
    
                pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
    
                noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
    
                noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO];    /* Dequantize */
    
                if (prev != -1000) {
                    int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
                    if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
                        if (!sce->zeroes[w*16+g])
                            prev_sf = sce->sf_idx[w*16+g];
                        continue;
                    }
                }
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    float band_energy, scale, pns_senergy;
    
                    const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
    
                    band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
                        s->random_state  = lcg_random(s->random_state);
                        PNS[i] = s->random_state;
    
                    band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
                    scale = noise_amp/sqrtf(band_energy);
                    s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
    
                    pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
                    pns_energy += pns_senergy;
    
                    s->abs_pow34(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
                    s->abs_pow34(PNS34, PNS, sce->ics.swb_sizes[g]);
    
                    dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
    
                                                NOR34,
                                                sce->ics.swb_sizes[g],
                                                sce->sf_idx[(w+w2)*16+g],
                                                sce->band_alt[(w+w2)*16+g],
    
                                                lambda/band->threshold, INFINITY, NULL, NULL, 0);
                    /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
                    dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
                }
    
                if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
    
                    dist2 += 5;
                } else {
                    dist2 += 9;
    
                energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
                sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
    
                if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
    
                    sce->band_type[w*16+g] = NOISE_BT;
                    sce->zeroes[w*16+g] = 0;
    
                    prev = noise_sfi;
    
                } else {
                    if (!sce->zeroes[w*16+g])
                        prev_sf = sce->sf_idx[w*16+g];
    
    static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
    {
        FFPsyBand *band;
        int w, g, w2;
        int wlen = 1024 / sce->ics.num_windows;
        int bandwidth, cutoff;
        const float lambda = s->lambda;
        const float freq_mult = avctx->sample_rate*0.5f/wlen;
        const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
        const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
    
        int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
            / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
            * (lambda / 120.f);
    
        /** Keep this in sync with twoloop's cutoff selection */
        float rate_bandwidth_multiplier = 1.5f;
        int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
            ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
            : (avctx->bit_rate / avctx->channels);
    
        frame_bit_rate *= 1.15f;
    
        if (avctx->cutoff > 0) {
            bandwidth = avctx->cutoff;
        } else {
            bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
        }
    
        cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
    
        memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
                float min_energy = -1.0f, max_energy = 0.0f;
                const int start = sce->ics.swb_offset[g];
                const float freq = start*freq_mult;
                const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
                if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
                    sce->can_pns[w*16+g] = 0;
                    continue;
                }
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                    band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
                    sfb_energy += band->energy;
                    spread     = FFMIN(spread, band->spread);
                    threshold  += band->threshold;
                    if (!w2) {
                        min_energy = max_energy = band->energy;
                    } else {
                        min_energy = FFMIN(min_energy, band->energy);
                        max_energy = FFMAX(max_energy, band->energy);
                    }
                }
    
                /* PNS is acceptable when all of these are true:
                 * 1. high spread energy (noise-like band)
                 * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
                 * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
                 */
                sce->pns_ener[w*16+g] = sfb_energy;
                if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
                    sce->can_pns[w*16+g] = 0;
                } else {
                    sce->can_pns[w*16+g] = 1;
                }
            }
        }
    }
    
    
    static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
    
        int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
        uint8_t nextband0[128], nextband1[128];
    
        float *M   = s->scoefs + 128*0, *S   = s->scoefs + 128*1;
        float *L34 = s->scoefs + 128*2, *R34 = s->scoefs + 128*3;
        float *M34 = s->scoefs + 128*4, *S34 = s->scoefs + 128*5;
    
        const float lambda = s->lambda;
    
        const float mslambda = FFMIN(1.0f, lambda / 120.f);
    
        SingleChannelElement *sce0 = &cpe->ch[0];
        SingleChannelElement *sce1 = &cpe->ch[1];
    
        if (!cpe->common_window)
    
        /** Scout out next nonzero bands */
        ff_init_nextband_map(sce0, nextband0);
        ff_init_nextband_map(sce1, nextband1);
    
        prev_mid = sce0->sf_idx[0];
        prev_side = sce1->sf_idx[0];
        for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
    
            start = 0;
    
            for (g = 0; g < sce0->ics.num_swb; g++) {
    
                float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
    
                if (!cpe->is_mask[w*16+g])
                    cpe->ms_mask[w*16+g] = 0;
                if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
    
                    float Mmax = 0.0f, Smax = 0.0f;
    
                    /* Must compute mid/side SF and book for the whole window group */
    
                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
    
                            M[i] = (sce0->coeffs[start+(w+w2)*128+i]
                                  + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
    
                                  - sce1->coeffs[start+(w+w2)*128+i];
    
                        s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
                        s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
    
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
                            Mmax = FFMAX(Mmax, M34[i]);
                            Smax = FFMAX(Smax, S34[i]);
                        }
                    }
    
                    for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
                        float dist1 = 0.0f, dist2 = 0.0f;
                        int B0 = 0, B1 = 0;
                        int minidx;
                        int mididx, sididx;
                        int midcb, sidcb;
    
                        minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
    
                        mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
                        sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
    
                        if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
    
                            && (   !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
                                || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
    
                            /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
                            continue;
                        }
    
    
                        midcb = find_min_book(Mmax, mididx);
                        sidcb = find_min_book(Smax, sididx);
    
    
                        /* No CB can be zero */
                        midcb = FFMAX(1,midcb);
                        sidcb = FFMAX(1,sidcb);
    
                        for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
                            FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
                            FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
                            float minthr = FFMIN(band0->threshold, band1->threshold);
                            int b1,b2,b3,b4;
                            for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
                                M[i] = (sce0->coeffs[start+(w+w2)*128+i]
                                      + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
                                S[i] =  M[i]
                                      - sce1->coeffs[start+(w+w2)*128+i];
                            }
    
    
                            s->abs_pow34(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
                            s->abs_pow34(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
                            s->abs_pow34(M34, M,                         sce0->ics.swb_sizes[g]);
                            s->abs_pow34(S34, S,                         sce0->ics.swb_sizes[g]);
    
                            dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
                                                        L34,
                                                        sce0->ics.swb_sizes[g],
    
                                                        sce0->sf_idx[w*16+g],
                                                        sce0->band_type[w*16+g],
    
                                                        lambda / band0->threshold, INFINITY, &b1, NULL, 0);
                            dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
                                                        R34,
                                                        sce1->ics.swb_sizes[g],
    
                                                        sce1->sf_idx[w*16+g],
                                                        sce1->band_type[w*16+g],
    
                                                        lambda / band1->threshold, INFINITY, &b2, NULL, 0);
                            dist2 += quantize_band_cost(s, M,
                                                        M34,
                                                        sce0->ics.swb_sizes[g],
    
                                                        lambda / minthr, INFINITY, &b3, NULL, 0);
                            dist2 += quantize_band_cost(s, S,
                                                        S34,
                                                        sce1->ics.swb_sizes[g],
    
                                                        mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
                            B0 += b1+b2;
                            B1 += b3+b4;
    
                            dist1 -= b1+b2;
                            dist2 -= b3+b4;
    
                        }
                        cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
                        if (cpe->ms_mask[w*16+g]) {
    
                            if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
    
                                sce0->sf_idx[w*16+g] = mididx;
                                sce1->sf_idx[w*16+g] = sididx;
                                sce0->band_type[w*16+g] = midcb;
                                sce1->band_type[w*16+g] = sidcb;
    
                            } else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) {
                                /* ms_mask unneeded, and it confuses some decoders */
                                cpe->ms_mask[w*16+g] = 0;
    
                            }
                            break;
                        } else if (B1 > B0) {
                            /* More boost won't fix this */
                            break;
                        }
    
                if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
                    prev_mid = sce0->sf_idx[w*16+g];
                if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
                    prev_side = sce1->sf_idx[w*16+g];
    
    AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
    
        [AAC_CODER_ANMR] = {
    
            search_for_quantizers_anmr,
            encode_window_bands_info,
            quantize_and_encode_band,
    
            ff_aac_encode_tns_info,
    
            ff_aac_encode_main_pred,
    
            ff_aac_apply_main_pred,
    
            ff_aac_update_ltp,
            ff_aac_ltp_insert_new_frame,
    
            ff_aac_search_for_tns,
    
            ff_aac_search_for_is,
            ff_aac_search_for_pred,
    
        [AAC_CODER_TWOLOOP] = {
    
            ff_aac_encode_tns_info,
    
            ff_aac_encode_main_pred,
    
            ff_aac_apply_main_pred,
    
            ff_aac_update_ltp,
            ff_aac_ltp_insert_new_frame,
    
            ff_aac_search_for_tns,
    
            ff_aac_search_for_is,
            ff_aac_search_for_pred,
    
        [AAC_CODER_FAST] = {
    
            ff_aac_encode_tns_info,
    
            ff_aac_encode_main_pred,
    
            ff_aac_apply_main_pred,
    
            ff_aac_update_ltp,
            ff_aac_ltp_insert_new_frame,
    
            ff_aac_search_for_tns,
    
            ff_aac_search_for_is,
            ff_aac_search_for_pred,