Skip to content
Snippets Groups Projects
utils.c 77.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
     *
     * This file is part of FFmpeg.
     *
    
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
    
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
    
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
    
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    
    #include "config.h"
    
    #define _SVID_SOURCE // needed for MAP_ANONYMOUS
    
    #define _DARWIN_C_SOURCE // needed for MAP_ANON
    
    #include <inttypes.h>
    #include <math.h>
    #include <stdio.h>
    
    #include <string.h>
    
    #if HAVE_SYS_MMAN_H
    #include <sys/mman.h>
    #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
    #define MAP_ANONYMOUS MAP_ANON
    #endif
    #endif
    #if HAVE_VIRTUALALLOC
    #define WIN32_LEAN_AND_MEAN
    #include <windows.h>
    #endif
    
    #include "libavutil/attributes.h"
    
    #include "libavutil/avassert.h"
    
    #include "libavutil/avutil.h"
    #include "libavutil/bswap.h"
    
    #include "libavutil/cpu.h"
    #include "libavutil/intreadwrite.h"
    
    #include "libavutil/mathematics.h"
    
    #include "libavutil/x86/asm.h"
    
    #include "rgb2rgb.h"
    #include "swscale.h"
    #include "swscale_internal.h"
    
    static void handle_formats(SwsContext *c);
    
    
        av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
    
        return LIBSWSCALE_VERSION_INT;
    }
    
    const char *swscale_configuration(void)
    {
    
    }
    
    const char *swscale_license(void)
    {
    #define LICENSE_PREFIX "libswscale license: "
    
        return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
    
    #define RET 0xC3 // near return opcode for x86
    
    typedef struct FormatEntry {
    
        uint8_t is_supported_in         :1;
        uint8_t is_supported_out        :1;
        uint8_t is_supported_endianness :1;
    
    static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
        [AV_PIX_FMT_YUV420P]     = { 1, 1 },
        [AV_PIX_FMT_YUYV422]     = { 1, 1 },
        [AV_PIX_FMT_RGB24]       = { 1, 1 },
        [AV_PIX_FMT_BGR24]       = { 1, 1 },
        [AV_PIX_FMT_YUV422P]     = { 1, 1 },
        [AV_PIX_FMT_YUV444P]     = { 1, 1 },
        [AV_PIX_FMT_YUV410P]     = { 1, 1 },
        [AV_PIX_FMT_YUV411P]     = { 1, 1 },
        [AV_PIX_FMT_GRAY8]       = { 1, 1 },
        [AV_PIX_FMT_MONOWHITE]   = { 1, 1 },
        [AV_PIX_FMT_MONOBLACK]   = { 1, 1 },
        [AV_PIX_FMT_PAL8]        = { 1, 0 },
        [AV_PIX_FMT_YUVJ420P]    = { 1, 1 },
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        [AV_PIX_FMT_YUVJ411P]    = { 1, 1 },
    
        [AV_PIX_FMT_YUVJ422P]    = { 1, 1 },
        [AV_PIX_FMT_YUVJ444P]    = { 1, 1 },
    
        [AV_PIX_FMT_YVYU422]     = { 1, 1 },
    
        [AV_PIX_FMT_UYVY422]     = { 1, 1 },
        [AV_PIX_FMT_UYYVYY411]   = { 0, 0 },
        [AV_PIX_FMT_BGR8]        = { 1, 1 },
        [AV_PIX_FMT_BGR4]        = { 0, 1 },
        [AV_PIX_FMT_BGR4_BYTE]   = { 1, 1 },
        [AV_PIX_FMT_RGB8]        = { 1, 1 },
        [AV_PIX_FMT_RGB4]        = { 0, 1 },
        [AV_PIX_FMT_RGB4_BYTE]   = { 1, 1 },
        [AV_PIX_FMT_NV12]        = { 1, 1 },
        [AV_PIX_FMT_NV21]        = { 1, 1 },
        [AV_PIX_FMT_ARGB]        = { 1, 1 },
        [AV_PIX_FMT_RGBA]        = { 1, 1 },
        [AV_PIX_FMT_ABGR]        = { 1, 1 },
        [AV_PIX_FMT_BGRA]        = { 1, 1 },
    
        [AV_PIX_FMT_0RGB]        = { 1, 1 },
        [AV_PIX_FMT_RGB0]        = { 1, 1 },
        [AV_PIX_FMT_0BGR]        = { 1, 1 },
        [AV_PIX_FMT_BGR0]        = { 1, 1 },
    
        [AV_PIX_FMT_GRAY16BE]    = { 1, 1 },
        [AV_PIX_FMT_GRAY16LE]    = { 1, 1 },
        [AV_PIX_FMT_YUV440P]     = { 1, 1 },
        [AV_PIX_FMT_YUVJ440P]    = { 1, 1 },
        [AV_PIX_FMT_YUVA420P]    = { 1, 1 },
    
        [AV_PIX_FMT_YUVA422P]    = { 1, 1 },
        [AV_PIX_FMT_YUVA444P]    = { 1, 1 },
    
        [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
        [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
        [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
        [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
        [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
        [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
        [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
        [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
        [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
        [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
        [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
        [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
        [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
        [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
        [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
        [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
        [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
        [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
    
        [AV_PIX_FMT_RGB48BE]     = { 1, 1 },
        [AV_PIX_FMT_RGB48LE]     = { 1, 1 },
    
        [AV_PIX_FMT_RGBA64BE]    = { 1, 1, 1 },
        [AV_PIX_FMT_RGBA64LE]    = { 1, 1, 1 },
    
        [AV_PIX_FMT_RGB565BE]    = { 1, 1 },
        [AV_PIX_FMT_RGB565LE]    = { 1, 1 },
        [AV_PIX_FMT_RGB555BE]    = { 1, 1 },
        [AV_PIX_FMT_RGB555LE]    = { 1, 1 },
        [AV_PIX_FMT_BGR565BE]    = { 1, 1 },
        [AV_PIX_FMT_BGR565LE]    = { 1, 1 },
        [AV_PIX_FMT_BGR555BE]    = { 1, 1 },
        [AV_PIX_FMT_BGR555LE]    = { 1, 1 },
        [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
        [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
        [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
        [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
        [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
        [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
        [AV_PIX_FMT_RGB444LE]    = { 1, 1 },
        [AV_PIX_FMT_RGB444BE]    = { 1, 1 },
        [AV_PIX_FMT_BGR444LE]    = { 1, 1 },
        [AV_PIX_FMT_BGR444BE]    = { 1, 1 },
        [AV_PIX_FMT_Y400A]       = { 1, 0 },
        [AV_PIX_FMT_BGR48BE]     = { 1, 1 },
        [AV_PIX_FMT_BGR48LE]     = { 1, 1 },
    
        [AV_PIX_FMT_BGRA64BE]    = { 1, 1, 1 },
        [AV_PIX_FMT_BGRA64LE]    = { 1, 1, 1 },
    
        [AV_PIX_FMT_YUV420P9BE]  = { 1, 1 },
        [AV_PIX_FMT_YUV420P9LE]  = { 1, 1 },
        [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
        [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
    
        [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
        [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
        [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
        [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
    
        [AV_PIX_FMT_YUV422P9BE]  = { 1, 1 },
        [AV_PIX_FMT_YUV422P9LE]  = { 1, 1 },
        [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
        [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
    
        [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
        [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
        [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
        [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
    
        [AV_PIX_FMT_YUV444P9BE]  = { 1, 1 },
        [AV_PIX_FMT_YUV444P9LE]  = { 1, 1 },
        [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
        [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
    
        [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
        [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
        [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
        [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
    
        [AV_PIX_FMT_GBRP]        = { 1, 1 },
    
        [AV_PIX_FMT_GBRP9LE]     = { 1, 1 },
        [AV_PIX_FMT_GBRP9BE]     = { 1, 1 },
        [AV_PIX_FMT_GBRP10LE]    = { 1, 1 },
        [AV_PIX_FMT_GBRP10BE]    = { 1, 1 },
        [AV_PIX_FMT_GBRP12LE]    = { 1, 1 },
        [AV_PIX_FMT_GBRP12BE]    = { 1, 1 },
        [AV_PIX_FMT_GBRP14LE]    = { 1, 1 },
        [AV_PIX_FMT_GBRP14BE]    = { 1, 1 },
    
        [AV_PIX_FMT_GBRP16LE]    = { 1, 0 },
        [AV_PIX_FMT_GBRP16BE]    = { 1, 0 },
    
        [AV_PIX_FMT_XYZ12BE]     = { 1, 1, 1 },
        [AV_PIX_FMT_XYZ12LE]     = { 1, 1, 1 },
    
        [AV_PIX_FMT_GBRAP]       = { 1, 1 },
        [AV_PIX_FMT_GBRAP16LE]   = { 1, 0 },
        [AV_PIX_FMT_GBRAP16BE]   = { 1, 0 },
    
        [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
        [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
        [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
        [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
        [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
        [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
        [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
        [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
        [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
        [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
        [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
        [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
    
    int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
    
        return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
    
               format_entries[pix_fmt].is_supported_in : 0;
    
    int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
    
        return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
    
               format_entries[pix_fmt].is_supported_out : 0;
    
    int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
    {
        return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
               format_entries[pix_fmt].is_supported_endianness : 0;
    }
    
    
    #if FF_API_SWS_FORMAT_NAME
    
    const char *sws_format_name(enum AVPixelFormat format)
    
        const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
        if (desc)
            return desc->name;
    
    static double getSplineCoeff(double a, double b, double c, double d,
                                 double dist)
    
        if (dist <= 1.0)
            return ((d * dist + c) * dist + b) * dist + a;
        else
            return getSplineCoeff(0.0,
                                   b + 2.0 * c + 3.0 * d,
                                   c + 3.0 * d,
                                  -b - 3.0 * c - 6.0 * d,
                                  dist - 1.0);
    
    static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
    {
        if (pos < 0) {
            pos = (128 << chr_subsample) - 128;
        }
        pos += 128; // relative to ideal left edge
        return pos >> chr_subsample;
    }
    
    
    typedef struct {
        int flag;                   ///< flag associated to the algorithm
        const char *description;    ///< human-readable description
        int size_factor;            ///< size factor used when initing the filters
    } ScaleAlgorithm;
    
    static const ScaleAlgorithm scale_algorithms[] = {
        { SWS_AREA,          "area averaging",                  1 /* downscale only, for upscale it is bilinear */ },
        { SWS_BICUBIC,       "bicubic",                         4 },
        { SWS_BICUBLIN,      "luma bicubic / chroma bilinear", -1 },
        { SWS_BILINEAR,      "bilinear",                        2 },
        { SWS_FAST_BILINEAR, "fast bilinear",                  -1 },
        { SWS_GAUSS,         "Gaussian",                        8 /* infinite ;) */ },
        { SWS_LANCZOS,       "Lanczos",                        -1 /* custom */ },
        { SWS_POINT,         "nearest neighbor / point",       -1 },
        { SWS_SINC,          "sinc",                           20 /* infinite ;) */ },
        { SWS_SPLINE,        "bicubic spline",                 20 /* infinite :)*/ },
        { SWS_X,             "experimental",                    8 },
    };
    
    
    static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
                                  int *outFilterSize, int xInc, int srcW,
                                  int dstW, int filterAlign, int one,
                                  int flags, int cpu_flags,
                                  SwsVector *srcFilter, SwsVector *dstFilter,
    
                                  double param[2], int srcPos, int dstPos)
    
    {
        int i;
        int filterSize;
        int filter2Size;
        int minFilterSize;
    
        int64_t *filter    = NULL;
        int64_t *filter2   = NULL;
    
        const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
    
        emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
    
        // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
    
        FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
    
        if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
    
            filterSize = 1;
    
            FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
                                    dstW, sizeof(*filter) * filterSize, fail);
    
            for (i = 0; i < dstW; i++) {
                filter[i * filterSize] = fone;
                (*filterPos)[i]        = i;
    
        } else if (flags & SWS_POINT) { // lame looking point sampling mode
    
            filterSize = 1;
    
            FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
                                   dstW, sizeof(*filter) * filterSize, fail);
    
            xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
    
            for (i = 0; i < dstW; i++) {
                int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
    
                (*filterPos)[i] = xx;
                filter[i]       = fone;
                xDstInSrc      += xInc;
    
        } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
                   (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
    
            filterSize = 2;
    
            FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
                                   dstW, sizeof(*filter) * filterSize, fail);
    
            xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
    
            for (i = 0; i < dstW; i++) {
                int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
    
                (*filterPos)[i] = xx;
                // bilinear upscale / linear interpolate / area averaging
                for (j = 0; j < filterSize; j++) {
    
                    int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
    
                    if (coeff < 0)
                        coeff = 0;
                    filter[i * filterSize + j] = coeff;
    
                xDstInSrc += xInc;
    
            int sizeFactor = -1;
    
            for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
    
                if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
    
                    sizeFactor = scale_algorithms[i].size_factor;
                    break;
                }
    
            if (flags & SWS_LANCZOS)
                sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
            av_assert0(sizeFactor > 0);
    
            if (xInc <= 1 << 16)
                filterSize = 1 + sizeFactor;    // upscale
            else
                filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
    
            filterSize = FFMIN(filterSize, srcW - 2);
            filterSize = FFMAX(filterSize, 1);
    
            FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
                                   dstW, sizeof(*filter) * filterSize, fail);
    
            xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
    
            for (i = 0; i < dstW; i++) {
    
                int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
    
                (*filterPos)[i] = xx;
                for (j = 0; j < filterSize; j++) {
                    int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
    
                    if (xInc > 1 << 16)
                        d = d * dstW / srcW;
                    floatd = d * (1.0 / (1 << 30));
    
                        int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] :   0) * (1 << 24);
                        int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
    
                        if (d >= 1LL << 31) {
    
                            coeff = 0.0;
                        } else {
                            int64_t dd  = (d  * d) >> 30;
                            int64_t ddd = (dd * d) >> 30;
    
    
                            if (d < 1LL << 30)
                                coeff =  (12 * (1 << 24) -  9 * B - 6 * C) * ddd +
                                        (-18 * (1 << 24) + 12 * B + 6 * C) *  dd +
                                          (6 * (1 << 24) -  2 * B)         * (1 << 30);
    
                                coeff =      (-B -  6 * C) * ddd +
                                          (6 * B + 30 * C) * dd  +
                                        (-12 * B - 48 * C) * d   +
                                          (8 * B + 24 * C) * (1 << 30);
    
                        coeff /= (1LL<<54)/fone;
    
    #if 0
                    else if (flags & SWS_X) {
                        double p  = param ? param * 0.01 : 0.3;
                        coeff     = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
                        coeff    *= pow(2.0, -p * d * d);
    
                        double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
    
                        if (floatd < 1.0)
                            c = cos(floatd * M_PI);
    
                            c = -1.0;
                        if (c < 0.0)
                            c = -pow(-c, A);
    
                            c = pow(c, A);
                        coeff = (c * 0.5 + 0.5) * fone;
    
                        int64_t d2 = d - (1 << 29);
                        if (d2 * xInc < -(1LL << (29 + 16)))
                            coeff = 1.0 * (1LL << (30 + 16));
                        else if (d2 * xInc < (1LL << (29 + 16)))
                            coeff = -d2 * xInc + (1LL << (29 + 16));
                        else
                            coeff = 0.0;
                        coeff *= fone >> (30 + 16);
    
                        double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                        coeff = (pow(2.0, -p * floatd * floatd)) * fone;
    
                        coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
    
                        double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                        coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
                                 (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
                        if (floatd > p)
                            coeff = 0;
    
                    } else if (flags & SWS_BILINEAR) {
    
                        coeff = (1 << 30) - d;
                        if (coeff < 0)
                            coeff = 0;
    
                        coeff *= fone >> 30;
                    } else if (flags & SWS_SPLINE) {
    
                        double p = -2.196152422706632;
                        coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
    
                        av_assert0(0);
    
                    filter[i * filterSize + j] = coeff;
    
                xDstInSrc += 2 * xInc;
    
            }
        }
    
        /* apply src & dst Filter to filter -> filter2
    
         * av_free(filter);
         */
    
        av_assert0(filterSize > 0);
    
        filter2Size = filterSize;
        if (srcFilter)
            filter2Size += srcFilter->length - 1;
        if (dstFilter)
            filter2Size += dstFilter->length - 1;
    
        av_assert0(filter2Size > 0);
    
        FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
    
    
        for (i = 0; i < dstW; i++) {
    
            if (srcFilter) {
                for (k = 0; k < srcFilter->length; k++) {
                    for (j = 0; j < filterSize; j++)
                        filter2[i * filter2Size + k + j] +=
                            srcFilter->coeff[k] * filter[i * filterSize + j];
    
                for (j = 0; j < filterSize; j++)
                    filter2[i * filter2Size + j] = filter[i * filterSize + j];
    
            // FIXME dstFilter
    
            (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
    
        }
        av_freep(&filter);
    
        /* try to reduce the filter-size (step1 find size and shift left) */
        // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
    
        minFilterSize = 0;
        for (i = dstW - 1; i >= 0; i--) {
            int min = filter2Size;
    
            int64_t cutOff = 0.0;
    
    
            /* get rid of near zero elements on the left by shifting left */
    
            for (j = 0; j < filter2Size; j++) {
    
                cutOff += FFABS(filter2[i * filter2Size]);
    
                if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
                    break;
    
                /* preserve monotonicity because the core can't handle the
                 * filter otherwise */
                if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
                    break;
    
                for (k = 1; k < filter2Size; k++)
                    filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
                filter2[i * filter2Size + k - 1] = 0;
    
            /* count near zeros on the right */
    
            for (j = filter2Size - 1; j > 0; j--) {
                cutOff += FFABS(filter2[i * filter2Size + j]);
    
                if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
                    break;
    
            if (min > minFilterSize)
                minFilterSize = min;
    
            // we can handle the special case 4, so we don't want to go the full 8
    
            /* We really don't want to waste our time doing useless computation, so
             * fall back on the scalar C code for very small filters.
             * Vectorizing is worth it only if you have a decent-sized vector. */
    
        if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
    
            // special case for unscaled vertical filtering
            if (minFilterSize == 1 && filterAlign == 2)
    
                filterAlign = 1;
    
        av_assert0(minFilterSize > 0);
    
        filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
    
        av_assert0(filterSize > 0);
    
        filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
    
        if (filterSize >= MAX_FILTER_SIZE * 16 /
    
                          ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
    
            av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreme scaling or set --sws-max-filter-size and recompile\n",
    
                   FF_CEIL_RSHIFT((filterSize+1) * ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16), 4));
    
        *outFilterSize = filterSize;
    
        if (flags & SWS_PRINT_INFO)
            av_log(NULL, AV_LOG_VERBOSE,
                   "SwScaler: reducing / aligning filtersize %d -> %d\n",
                   filter2Size, filterSize);
    
        /* try to reduce the filter-size (step2 reduce it) */
    
        for (i = 0; i < dstW; i++) {
    
            for (j = 0; j < filterSize; j++) {
                if (j >= filter2Size)
                    filter[i * filterSize + j] = 0;
                else
                    filter[i * filterSize + j] = filter2[i * filter2Size + j];
                if ((flags & SWS_BITEXACT) && j >= minFilterSize)
                    filter[i * filterSize + j] = 0;
    
        // FIXME try to align filterPos if possible
    
        for (i = 0; i < dstW; i++) {
    
            int j;
            if ((*filterPos)[i] < 0) {
                // move filter coefficients left to compensate for filterPos
    
                for (j = 1; j < filterSize; j++) {
                    int left = FFMAX(j + (*filterPos)[i], 0);
                    filter[i * filterSize + left] += filter[i * filterSize + j];
                    filter[i * filterSize + j]     = 0;
    
                }
                (*filterPos)[i]= 0;
            }
    
            if ((*filterPos)[i] + filterSize > srcW) {
    
                int shift = (*filterPos)[i] + filterSize - srcW;
    
                // move filter coefficients right to compensate for filterPos
    
                for (j = filterSize - 2; j >= 0; j--) {
                    int right = FFMIN(j + shift, filterSize - 1);
                    filter[i * filterSize + right] += filter[i * filterSize + j];
                    filter[i * filterSize + j]      = 0;
    
                }
                (*filterPos)[i]= srcW - filterSize;
            }
        }
    
        // Note the +1 is for the MMX scaler which reads over the end
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
    
        FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
                                (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
    
        for (i = 0; i < dstW; i++) {
    
            int64_t error = 0;
            int64_t sum   = 0;
    
            for (j = 0; j < filterSize; j++) {
                sum += filter[i * filterSize + j];
    
            sum = (sum + one / 2) / one;
    
            if (!sum) {
                av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
                sum = 1;
            }
    
            for (j = 0; j < *outFilterSize; j++) {
                int64_t v = filter[i * filterSize + j] + error;
                int intV  = ROUNDED_DIV(v, sum);
                (*outFilter)[i * (*outFilterSize) + j] = intV;
                error                                  = v - intV * sum;
    
        (*filterPos)[dstW + 0] =
        (*filterPos)[dstW + 1] =
        (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
                                                          * read over the end */
        for (i = 0; i < *outFilterSize; i++) {
            int k = (dstW - 1) * (*outFilterSize) + i;
    
            (*outFilter)[k + 1 * (*outFilterSize)] =
            (*outFilter)[k + 2 * (*outFilterSize)] =
            (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
    
        if(ret < 0)
            av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
    
    #if HAVE_MMXEXT_INLINE
    
    static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
                                           int16_t *filter, int32_t *filterPos,
                                           int numSplits)
    
    {
        uint8_t *fragmentA;
        x86_reg imm8OfPShufW1A;
        x86_reg imm8OfPShufW2A;
        x86_reg fragmentLengthA;
        uint8_t *fragmentB;
        x86_reg imm8OfPShufW1B;
        x86_reg imm8OfPShufW2B;
        x86_reg fragmentLengthB;
        int fragmentPos;
    
        int xpos, i;
    
        // create an optimized horizontal scaling routine
    
        /* This scaler is made of runtime-generated MMXEXT code using specially tuned
    
         * pshufw instructions. For every four output pixels, if four input pixels
         * are enough for the fast bilinear scaling, then a chunk of fragmentB is
         * used. If five input pixels are needed, then a chunk of fragmentA is used.
    
        // code fragment
    
        __asm__ volatile (
    
            "0:                                             \n\t"
            "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
            "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
            "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
            "punpcklbw                %%mm7, %%mm1          \n\t"
            "punpcklbw                %%mm7, %%mm0          \n\t"
            "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
            "1:                                             \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
            "2:                                             \n\t"
            "psubw                    %%mm1, %%mm0          \n\t"
            "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
            "pmullw                   %%mm3, %%mm0          \n\t"
            "psllw                       $7, %%mm1          \n\t"
            "paddw                    %%mm1, %%mm0          \n\t"
    
            "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
    
            "add                         $8, %%"REG_a"      \n\t"
    
            // "int $3                                         \n\t"
            "lea       " LOCAL_MANGLE(0b) ", %0             \n\t"
            "lea       " LOCAL_MANGLE(1b) ", %1             \n\t"
            "lea       " LOCAL_MANGLE(2b) ", %2             \n\t"
    
            "dec                         %1                 \n\t"
            "dec                         %2                 \n\t"
            "sub                         %0, %1             \n\t"
            "sub                         %0, %2             \n\t"
    
            "lea       " LOCAL_MANGLE(9b) ", %3             \n\t"
    
            : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
              "=r" (fragmentLengthA)
            );
    
        __asm__ volatile (
    
            "0:                                             \n\t"
            "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
            "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
            "punpcklbw                %%mm7, %%mm0          \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
            "1:                                             \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
            "2:                                             \n\t"
            "psubw                    %%mm1, %%mm0          \n\t"
            "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
            "pmullw                   %%mm3, %%mm0          \n\t"
            "psllw                       $7, %%mm1          \n\t"
            "paddw                    %%mm1, %%mm0          \n\t"
    
            "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
    
            "add                         $8, %%"REG_a"      \n\t"
    
            // "int                       $3                   \n\t"
            "lea       " LOCAL_MANGLE(0b) ", %0             \n\t"
            "lea       " LOCAL_MANGLE(1b) ", %1             \n\t"
            "lea       " LOCAL_MANGLE(2b) ", %2             \n\t"
    
            "dec                         %1                 \n\t"
            "dec                         %2                 \n\t"
            "sub                         %0, %1             \n\t"
            "sub                         %0, %2             \n\t"
    
            "lea       " LOCAL_MANGLE(9b) ", %3             \n\t"
    
            : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
              "=r" (fragmentLengthB)
            );
    
        xpos        = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
        fragmentPos = 0;
    
        for (i = 0; i < dstW / numSplits; i++) {
            int xx = xpos >> 16;
    
            if ((i & 3) == 0) {
                int a                  = 0;
                int b                  = ((xpos + xInc) >> 16) - xx;
                int c                  = ((xpos + xInc * 2) >> 16) - xx;
                int d                  = ((xpos + xInc * 3) >> 16) - xx;
                int inc                = (d + 1 < 4);
    
                uint8_t *fragment      = inc ? fragmentB : fragmentA;
                x86_reg imm8OfPShufW1  = inc ? imm8OfPShufW1B : imm8OfPShufW1A;
                x86_reg imm8OfPShufW2  = inc ? imm8OfPShufW2B : imm8OfPShufW2A;
                x86_reg fragmentLength = inc ? fragmentLengthB : fragmentLengthA;
    
                int maxShift           = 3 - (d + inc);
                int shift              = 0;
    
                    filter[i]        = ((xpos              & 0xFFFF) ^ 0xFFFF) >> 9;
                    filter[i + 1]    = (((xpos + xInc)     & 0xFFFF) ^ 0xFFFF) >> 9;
                    filter[i + 2]    = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
                    filter[i + 3]    = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
                    filterPos[i / 2] = xx;
    
    
                    memcpy(filterCode + fragmentPos, fragment, fragmentLength);
    
    
                    filterCode[fragmentPos + imm8OfPShufW1] =  (a + inc)       |
                                                              ((b + inc) << 2) |
                                                              ((c + inc) << 4) |
                                                              ((d + inc) << 6);
                    filterCode[fragmentPos + imm8OfPShufW2] =  a | (b << 2) |
                                                                   (c << 4) |
                                                                   (d << 6);
    
                    if (i + 4 - inc >= dstW)
                        shift = maxShift;               // avoid overread
                    else if ((filterPos[i / 2] & 3) <= maxShift)
                        shift = filterPos[i / 2] & 3;   // align
    
                    if (shift && i >= shift) {
                        filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
                        filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
                        filterPos[i / 2]                        -= shift;
    
                fragmentPos += fragmentLength;
    
                    filterCode[fragmentPos] = RET;
    
            filterPos[((i / 2) + 1) & (~1)] = xpos >> 16;  // needed to jump to the next part
    
    #endif /* HAVE_MMXEXT_INLINE */
    
    static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
    {
    
        int64_t W, V, Z, Cy, Cu, Cv;
    
        int64_t vr =  table[0];
        int64_t ub =  table[1];
        int64_t ug = -table[2];
        int64_t vg = -table[3];
        int64_t ONE = 65536;
        int64_t cy = ONE;
    
        uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
        int i;
        static const int8_t map[] = {
        BY_IDX, GY_IDX, -1    , BY_IDX, BY_IDX, GY_IDX, -1    , BY_IDX,
        RY_IDX, -1    , GY_IDX, RY_IDX, RY_IDX, -1    , GY_IDX, RY_IDX,
        RY_IDX, GY_IDX, -1    , RY_IDX, RY_IDX, GY_IDX, -1    , RY_IDX,
        BY_IDX, -1    , GY_IDX, BY_IDX, BY_IDX, -1    , GY_IDX, BY_IDX,
        BU_IDX, GU_IDX, -1    , BU_IDX, BU_IDX, GU_IDX, -1    , BU_IDX,
        RU_IDX, -1    , GU_IDX, RU_IDX, RU_IDX, -1    , GU_IDX, RU_IDX,
        RU_IDX, GU_IDX, -1    , RU_IDX, RU_IDX, GU_IDX, -1    , RU_IDX,
        BU_IDX, -1    , GU_IDX, BU_IDX, BU_IDX, -1    , GU_IDX, BU_IDX,
        BV_IDX, GV_IDX, -1    , BV_IDX, BV_IDX, GV_IDX, -1    , BV_IDX,
        RV_IDX, -1    , GV_IDX, RV_IDX, RV_IDX, -1    , GV_IDX, RV_IDX,
        RV_IDX, GV_IDX, -1    , RV_IDX, RV_IDX, GV_IDX, -1    , RV_IDX,
        BV_IDX, -1    , GV_IDX, BV_IDX, BV_IDX, -1    , GV_IDX, BV_IDX,
    
        RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
        BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
        GY_IDX, -1    , GY_IDX, -1    , GY_IDX, -1    , GY_IDX, -1    ,
        -1    , GY_IDX, -1    , GY_IDX, -1    , GY_IDX, -1    , GY_IDX,
        RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
        BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
        GU_IDX, -1    , GU_IDX, -1    , GU_IDX, -1    , GU_IDX, -1    ,
        -1    , GU_IDX, -1    , GU_IDX, -1    , GU_IDX, -1    , GU_IDX,
        RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
        BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
        GV_IDX, -1    , GV_IDX, -1    , GV_IDX, -1    , GV_IDX, -1    ,
    
        -1    , GV_IDX, -1    , GV_IDX, -1    , GV_IDX, -1    , GV_IDX, //23
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //24
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //25
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //26
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //27
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //28
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //29
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //30
        -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //31
        BY_IDX, GY_IDX, RY_IDX, -1    , -1    , -1    , -1    , -1    , //32
        BU_IDX, GU_IDX, RU_IDX, -1    , -1    , -1    , -1    , -1    , //33
        BV_IDX, GV_IDX, RV_IDX, -1    , -1    , -1    , -1    , -1    , //34
    
    
        dstRange = 0; //FIXME range = 1 is handled elsewhere
    
        if (!dstRange) {
            cy = cy * 255 / 219;
        } else {
            vr = vr * 224 / 255;
            ub = ub * 224 / 255;
            ug = ug * 224 / 255;
            vg = vg * 224 / 255;
        }
    
        W = ROUNDED_DIV(ONE*ONE*ug, ub);
        V = ROUNDED_DIV(ONE*ONE*vg, vr);
    
        Cy = ROUNDED_DIV(cy*Z, ONE);
        Cu = ROUNDED_DIV(ub*Z, ONE);
        Cv = ROUNDED_DIV(vr*Z, ONE);
    
        c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V        , Cy);
        c->input_rgb2yuv_table[GY_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE  , Cy);
        c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W        , Cy);
    
        c->input_rgb2yuv_table[RU_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V        , Cu);
        c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE  , Cu);
        c->input_rgb2yuv_table[BU_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W)    , Cu);
    
        c->input_rgb2yuv_table[RV_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z)    , Cv);
        c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE  , Cv);
        c->input_rgb2yuv_table[BV_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W        , Cv);
    
        if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
    
            c->input_rgb2yuv_table[BY_IDX] =  ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[BU_IDX] =  ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[GY_IDX] =  ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[RY_IDX] =  ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[RV_IDX] =  ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
            c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
        }
    
        for(i=0; i<FF_ARRAY_ELEMS(map); i++)
            AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
    
    static void fill_xyztables(struct SwsContext *c)
    {
        int i;
        double xyzgamma = XYZ_GAMMA;
        double rgbgamma = 1.0 / RGB_GAMMA;
    
        double xyzgammainv = 1.0 / XYZ_GAMMA;
        double rgbgammainv = RGB_GAMMA;
    
        static const int16_t xyz2rgb_matrix[3][4] = {
            {13270, -6295, -2041},
            {-3969,  7682,   170},
            {  228,  -835,  4329} };
    
        static const int16_t rgb2xyz_matrix[3][4] = {
            {1689, 1464,  739},
            { 871, 2929,  296},
            {  79,  488, 3891} };
        static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
    
    
        memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
    
        memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
    
        c->xyzgamma = xyzgamma_tab;
        c->rgbgamma = rgbgamma_tab;
    
        c->xyzgammainv = xyzgammainv_tab;
        c->rgbgammainv = rgbgammainv_tab;
    
    
        if (rgbgamma_tab[4095])
            return;
    
    
        /* set gamma vectors */
        for (i = 0; i < 4096; i++) {
    
            xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
            rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
    
            xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
            rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
    
    int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
                                 int srcRange, const int table[4], int dstRange,
                                 int brightness, int contrast, int saturation)
    
        const AVPixFmtDescriptor *desc_dst;
        const AVPixFmtDescriptor *desc_src;
    
        memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
        memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
    
        handle_formats(c);
        desc_dst = av_pix_fmt_desc_get(c->dstFormat);
        desc_src = av_pix_fmt_desc_get(c->srcFormat);
    
    
        if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
            dstRange = 0;
        if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
            srcRange = 0;
    
    
        c->brightness = brightness;
        c->contrast   = contrast;