Skip to content
Snippets Groups Projects
utils.c 59.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
     *
    
     * This file is part of Libav.
    
     * Libav is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
    
     * Libav is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
    
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
    
     * You should have received a copy of the GNU Lesser General Public
    
     * License along with Libav; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    
    #include "config.h"
    
    #define _SVID_SOURCE // needed for MAP_ANONYMOUS
    #include <assert.h>
    
    #include <inttypes.h>
    #include <math.h>
    #include <stdio.h>
    
    #include <string.h>
    
    #if HAVE_SYS_MMAN_H
    #include <sys/mman.h>
    #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
    #define MAP_ANONYMOUS MAP_ANON
    #endif
    #endif
    #if HAVE_VIRTUALALLOC
    #define WIN32_LEAN_AND_MEAN
    #include <windows.h>
    #endif
    
    #include "libavutil/attributes.h"
    
    #include "libavutil/avutil.h"
    #include "libavutil/bswap.h"
    
    #include "libavutil/cpu.h"
    #include "libavutil/intreadwrite.h"
    
    #include "libavutil/mathematics.h"
    
    #include "libavutil/x86/asm.h"
    
    #include "rgb2rgb.h"
    #include "swscale.h"
    #include "swscale_internal.h"
    
    
    unsigned swscale_version(void)
    {
        return LIBSWSCALE_VERSION_INT;
    }
    
    const char *swscale_configuration(void)
    {
    
        return LIBAV_CONFIGURATION;
    
    }
    
    const char *swscale_license(void)
    {
    #define LICENSE_PREFIX "libswscale license: "
    
        return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
    
    #define RET 0xC3 // near return opcode for x86
    
    typedef struct FormatEntry {
        int is_supported_in, is_supported_out;
    } FormatEntry;
    
    
    static const FormatEntry format_entries[PIX_FMT_NB] = {
    
        [PIX_FMT_YUV420P]     = { 1, 1 },
        [PIX_FMT_YUYV422]     = { 1, 1 },
        [PIX_FMT_RGB24]       = { 1, 1 },
        [PIX_FMT_BGR24]       = { 1, 1 },
        [PIX_FMT_YUV422P]     = { 1, 1 },
        [PIX_FMT_YUV444P]     = { 1, 1 },
        [PIX_FMT_YUV410P]     = { 1, 1 },
        [PIX_FMT_YUV411P]     = { 1, 1 },
        [PIX_FMT_GRAY8]       = { 1, 1 },
        [PIX_FMT_MONOWHITE]   = { 1, 1 },
        [PIX_FMT_MONOBLACK]   = { 1, 1 },
        [PIX_FMT_PAL8]        = { 1, 0 },
        [PIX_FMT_YUVJ420P]    = { 1, 1 },
        [PIX_FMT_YUVJ422P]    = { 1, 1 },
        [PIX_FMT_YUVJ444P]    = { 1, 1 },
        [PIX_FMT_UYVY422]     = { 1, 1 },
        [PIX_FMT_UYYVYY411]   = { 0, 0 },
        [PIX_FMT_BGR8]        = { 1, 1 },
        [PIX_FMT_BGR4]        = { 0, 1 },
        [PIX_FMT_BGR4_BYTE]   = { 1, 1 },
        [PIX_FMT_RGB8]        = { 1, 1 },
        [PIX_FMT_RGB4]        = { 0, 1 },
        [PIX_FMT_RGB4_BYTE]   = { 1, 1 },
        [PIX_FMT_NV12]        = { 1, 1 },
        [PIX_FMT_NV21]        = { 1, 1 },
        [PIX_FMT_ARGB]        = { 1, 1 },
        [PIX_FMT_RGBA]        = { 1, 1 },
        [PIX_FMT_ABGR]        = { 1, 1 },
        [PIX_FMT_BGRA]        = { 1, 1 },
        [PIX_FMT_GRAY16BE]    = { 1, 1 },
        [PIX_FMT_GRAY16LE]    = { 1, 1 },
        [PIX_FMT_YUV440P]     = { 1, 1 },
        [PIX_FMT_YUVJ440P]    = { 1, 1 },
        [PIX_FMT_YUVA420P]    = { 1, 1 },
        [PIX_FMT_RGB48BE]     = { 1, 1 },
        [PIX_FMT_RGB48LE]     = { 1, 1 },
        [PIX_FMT_RGB565BE]    = { 1, 1 },
        [PIX_FMT_RGB565LE]    = { 1, 1 },
        [PIX_FMT_RGB555BE]    = { 1, 1 },
        [PIX_FMT_RGB555LE]    = { 1, 1 },
        [PIX_FMT_BGR565BE]    = { 1, 1 },
        [PIX_FMT_BGR565LE]    = { 1, 1 },
        [PIX_FMT_BGR555BE]    = { 1, 1 },
        [PIX_FMT_BGR555LE]    = { 1, 1 },
        [PIX_FMT_YUV420P16LE] = { 1, 1 },
        [PIX_FMT_YUV420P16BE] = { 1, 1 },
        [PIX_FMT_YUV422P16LE] = { 1, 1 },
        [PIX_FMT_YUV422P16BE] = { 1, 1 },
        [PIX_FMT_YUV444P16LE] = { 1, 1 },
        [PIX_FMT_YUV444P16BE] = { 1, 1 },
        [PIX_FMT_RGB444LE]    = { 1, 1 },
        [PIX_FMT_RGB444BE]    = { 1, 1 },
        [PIX_FMT_BGR444LE]    = { 1, 1 },
        [PIX_FMT_BGR444BE]    = { 1, 1 },
        [PIX_FMT_Y400A]       = { 1, 0 },
        [PIX_FMT_BGR48BE]     = { 1, 1 },
        [PIX_FMT_BGR48LE]     = { 1, 1 },
        [PIX_FMT_YUV420P9BE]  = { 1, 1 },
        [PIX_FMT_YUV420P9LE]  = { 1, 1 },
        [PIX_FMT_YUV420P10BE] = { 1, 1 },
        [PIX_FMT_YUV420P10LE] = { 1, 1 },
        [PIX_FMT_YUV422P9BE]  = { 1, 1 },
        [PIX_FMT_YUV422P9LE]  = { 1, 1 },
        [PIX_FMT_YUV422P10BE] = { 1, 1 },
        [PIX_FMT_YUV422P10LE] = { 1, 1 },
        [PIX_FMT_YUV444P9BE]  = { 1, 1 },
        [PIX_FMT_YUV444P9LE]  = { 1, 1 },
        [PIX_FMT_YUV444P10BE] = { 1, 1 },
        [PIX_FMT_YUV444P10LE] = { 1, 1 },
        [PIX_FMT_GBRP]        = { 1, 0 },
        [PIX_FMT_GBRP9LE]     = { 1, 0 },
        [PIX_FMT_GBRP9BE]     = { 1, 0 },
        [PIX_FMT_GBRP10LE]    = { 1, 0 },
        [PIX_FMT_GBRP10BE]    = { 1, 0 },
        [PIX_FMT_GBRP16LE]    = { 1, 0 },
        [PIX_FMT_GBRP16BE]    = { 1, 0 },
    
    
    int sws_isSupportedInput(enum PixelFormat pix_fmt)
    {
    
        return (unsigned)pix_fmt < PIX_FMT_NB ?
    
               format_entries[pix_fmt].is_supported_in : 0;
    
    }
    
    int sws_isSupportedOutput(enum PixelFormat pix_fmt)
    {
    
        return (unsigned)pix_fmt < PIX_FMT_NB ?
    
               format_entries[pix_fmt].is_supported_out : 0;
    
    }
    
    extern const int32_t ff_yuv2rgb_coeffs[8][4];
    
    const char *sws_format_name(enum PixelFormat format)
    {
        if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
            return av_pix_fmt_descriptors[format].name;
        else
            return "Unknown format";
    }
    
    
    static double getSplineCoeff(double a, double b, double c, double d,
                                 double dist)
    
        if (dist <= 1.0)
            return ((d * dist + c) * dist + b) * dist + a;
        else
            return getSplineCoeff(0.0,
                                   b + 2.0 * c + 3.0 * d,
                                   c + 3.0 * d,
                                  -b - 3.0 * c - 6.0 * d,
                                  dist - 1.0);
    
    static int initFilter(int16_t **outFilter, int32_t **filterPos,
                          int *outFilterSize, int xInc, int srcW, int dstW,
                          int filterAlign, int one, int flags, int cpu_flags,
                          SwsVector *srcFilter, SwsVector *dstFilter,
                          double param[2], int is_horizontal)
    
    {
        int i;
        int filterSize;
        int filter2Size;
        int minFilterSize;
    
        int64_t *filter    = NULL;
        int64_t *filter2   = NULL;
        const int64_t fone = 1LL << 54;
        int ret            = -1;
    
        emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
    
        // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
        FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
    
        if (FFABS(xInc - 0x10000) < 10) { // unscaled
    
            filterSize = 1;
            FF_ALLOCZ_OR_GOTO(NULL, filter,
                              dstW * sizeof(*filter) * filterSize, fail);
    
            for (i = 0; i < dstW; i++) {
                filter[i * filterSize] = fone;
                (*filterPos)[i]        = i;
    
        } else if (flags & SWS_POINT) { // lame looking point sampling mode
    
            filterSize = 1;
            FF_ALLOC_OR_GOTO(NULL, filter,
                             dstW * sizeof(*filter) * filterSize, fail);
    
            xDstInSrc = xInc / 2 - 0x8000;
            for (i = 0; i < dstW; i++) {
                int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
    
                (*filterPos)[i] = xx;
                filter[i]       = fone;
                xDstInSrc      += xInc;
    
        } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
                   (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
    
            filterSize = 2;
            FF_ALLOC_OR_GOTO(NULL, filter,
                             dstW * sizeof(*filter) * filterSize, fail);
    
            xDstInSrc = xInc / 2 - 0x8000;
            for (i = 0; i < dstW; i++) {
                int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
    
                (*filterPos)[i] = xx;
                // bilinear upscale / linear interpolate / area averaging
                for (j = 0; j < filterSize; j++) {
                    int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
                                    (fone >> 16);
                    if (coeff < 0)
                        coeff = 0;
                    filter[i * filterSize + j] = coeff;
    
                xDstInSrc += xInc;
    
            if (flags & SWS_BICUBIC)
                sizeFactor = 4;
            else if (flags & SWS_X)
                sizeFactor = 8;
            else if (flags & SWS_AREA)
                sizeFactor = 1;     // downscale only, for upscale it is bilinear
            else if (flags & SWS_GAUSS)
                sizeFactor = 8;     // infinite ;)
            else if (flags & SWS_LANCZOS)
                sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
            else if (flags & SWS_SINC)
                sizeFactor = 20;    // infinite ;)
            else if (flags & SWS_SPLINE)
                sizeFactor = 20;    // infinite ;)
            else if (flags & SWS_BILINEAR)
                sizeFactor = 2;
    
                sizeFactor = 0;     // GCC warning killer
    
            if (xInc <= 1 << 16)
                filterSize = 1 + sizeFactor;    // upscale
            else
                filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
    
            filterSize = FFMIN(filterSize, srcW - 2);
            filterSize = FFMAX(filterSize, 1);
    
            FF_ALLOC_OR_GOTO(NULL, filter,
                             dstW * sizeof(*filter) * filterSize, fail);
    
            xDstInSrc = xInc - 0x10000;
            for (i = 0; i < dstW; i++) {
                int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
    
                (*filterPos)[i] = xx;
                for (j = 0; j < filterSize; j++) {
                    int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
    
                    if (xInc > 1 << 16)
                        d = d * dstW / srcW;
                    floatd = d * (1.0 / (1 << 30));
    
                        int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] :   0) * (1 << 24);
                        int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
    
                        if (d >= 1LL << 31) {
    
                            coeff = 0.0;
                        } else {
                            int64_t dd  = (d  * d) >> 30;
                            int64_t ddd = (dd * d) >> 30;
    
    
                            if (d < 1LL << 30)
                                coeff =  (12 * (1 << 24) -  9 * B - 6 * C) * ddd +
                                        (-18 * (1 << 24) + 12 * B + 6 * C) *  dd +
                                          (6 * (1 << 24) -  2 * B)         * (1 << 30);
    
                                coeff =      (-B -  6 * C) * ddd +
                                          (6 * B + 30 * C) * dd  +
                                        (-12 * B - 48 * C) * d   +
                                          (8 * B + 24 * C) * (1 << 30);
    
                        coeff *= fone >> (30 + 24);
    
    #if 0
                    else if (flags & SWS_X) {
                        double p  = param ? param * 0.01 : 0.3;
                        coeff     = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
                        coeff    *= pow(2.0, -p * d * d);
                    }
    #endif
    
                        double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
    
                        if (floatd < 1.0)
                            c = cos(floatd * M_PI);
    
                            c = -1.0;
                        if (c < 0.0)
                            c = -pow(-c, A);
                        else
                            c = pow(c, A);
                        coeff = (c * 0.5 + 0.5) * fone;
    
                        int64_t d2 = d - (1 << 29);
                        if (d2 * xInc < -(1LL << (29 + 16)))
                            coeff = 1.0 * (1LL << (30 + 16));
                        else if (d2 * xInc < (1LL << (29 + 16)))
                            coeff = -d2 * xInc + (1LL << (29 + 16));
                        else
                            coeff = 0.0;
                        coeff *= fone >> (30 + 16);
    
                        double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                        coeff = (pow(2.0, -p * floatd * floatd)) * fone;
    
                        coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
    
                        double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                        coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
                                 (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
                        if (floatd > p)
                            coeff = 0;
    
                    } else if (flags & SWS_BILINEAR) {
    
                        coeff = (1 << 30) - d;
                        if (coeff < 0)
                            coeff = 0;
    
                        coeff *= fone >> 30;
                    } else if (flags & SWS_SPLINE) {
    
                        double p = -2.196152422706632;
                        coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
    
                        coeff = 0.0; // GCC warning killer
    
                    filter[i * filterSize + j] = coeff;
    
                xDstInSrc += 2 * xInc;
    
            }
        }
    
        /* apply src & dst Filter to filter -> filter2
    
         * av_free(filter);
         */
        assert(filterSize > 0);
        filter2Size = filterSize;
        if (srcFilter)
            filter2Size += srcFilter->length - 1;
        if (dstFilter)
            filter2Size += dstFilter->length - 1;
        assert(filter2Size > 0);
        FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
    
        for (i = 0; i < dstW; i++) {
    
            if (srcFilter) {
                for (k = 0; k < srcFilter->length; k++) {
                    for (j = 0; j < filterSize; j++)
                        filter2[i * filter2Size + k + j] +=
                            srcFilter->coeff[k] * filter[i * filterSize + j];
    
                for (j = 0; j < filterSize; j++)
                    filter2[i * filter2Size + j] = filter[i * filterSize + j];
    
            // FIXME dstFilter
    
            (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
    
        }
        av_freep(&filter);
    
        /* try to reduce the filter-size (step1 find size and shift left) */
        // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
    
        minFilterSize = 0;
        for (i = dstW - 1; i >= 0; i--) {
            int min = filter2Size;
    
            int64_t cutOff = 0.0;
    
    
            /* get rid of near zero elements on the left by shifting left */
    
            for (j = 0; j < filter2Size; j++) {
    
                cutOff += FFABS(filter2[i * filter2Size]);
    
                if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
                    break;
    
                /* preserve monotonicity because the core can't handle the
                 * filter otherwise */
                if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
                    break;
    
                for (k = 1; k < filter2Size; k++)
                    filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
                filter2[i * filter2Size + k - 1] = 0;
    
            /* count near zeros on the right */
    
            for (j = filter2Size - 1; j > 0; j--) {
                cutOff += FFABS(filter2[i * filter2Size + j]);
    
                if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
                    break;
    
            if (min > minFilterSize)
                minFilterSize = min;
    
        if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
    
            // we can handle the special case 4, so we don't want to go the full 8
    
            /* We really don't want to waste our time doing useless computation, so
             * fall back on the scalar C code for very small filters.
             * Vectorizing is worth it only if you have a decent-sized vector. */
    
        if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
    
            // special case for unscaled vertical filtering
            if (minFilterSize == 1 && filterAlign == 2)
    
                filterAlign = 1;
    
        filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
    
        filter = av_malloc(filterSize * dstW * sizeof(*filter));
        if (filterSize >= MAX_FILTER_SIZE * 16 /
                          ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
    
        *outFilterSize = filterSize;
    
        if (flags & SWS_PRINT_INFO)
            av_log(NULL, AV_LOG_VERBOSE,
                   "SwScaler: reducing / aligning filtersize %d -> %d\n",
                   filter2Size, filterSize);
    
        /* try to reduce the filter-size (step2 reduce it) */
    
        for (i = 0; i < dstW; i++) {
    
            for (j = 0; j < filterSize; j++) {
                if (j >= filter2Size)
                    filter[i * filterSize + j] = 0;
                else
                    filter[i * filterSize + j] = filter2[i * filter2Size + j];
                if ((flags & SWS_BITEXACT) && j >= minFilterSize)
                    filter[i * filterSize + j] = 0;
    
        // FIXME try to align filterPos if possible
    
        if (is_horizontal) {
            for (i = 0; i < dstW; i++) {
                int j;
                if ((*filterPos)[i] < 0) {
                    // move filter coefficients left to compensate for filterPos
                    for (j = 1; j < filterSize; j++) {
                        int left = FFMAX(j + (*filterPos)[i], 0);
                        filter[i * filterSize + left] += filter[i * filterSize + j];
    
                        filter[i * filterSize + j]     = 0;
    
                if ((*filterPos)[i] + filterSize > srcW) {
                    int shift = (*filterPos)[i] + filterSize - srcW;
                    // move filter coefficients right to compensate for filterPos
                    for (j = filterSize - 2; j >= 0; j--) {
                        int right = FFMIN(j + shift, filterSize - 1);
                        filter[i * filterSize + right] += filter[i * filterSize + j];
    
                        filter[i * filterSize + j]      = 0;
    
                    }
                    (*filterPos)[i] = srcW - filterSize;
    
                }
            }
        }
    
        // Note the +1 is for the MMX scaler which reads over the end
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
    
        FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
                          *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
    
        for (i = 0; i < dstW; i++) {
    
            int64_t error = 0;
            int64_t sum   = 0;
    
            for (j = 0; j < filterSize; j++) {
                sum += filter[i * filterSize + j];
    
            sum = (sum + one / 2) / one;
            for (j = 0; j < *outFilterSize; j++) {
                int64_t v = filter[i * filterSize + j] + error;
                int intV  = ROUNDED_DIV(v, sum);
                (*outFilter)[i * (*outFilterSize) + j] = intV;
                error                                  = v - intV * sum;
    
        (*filterPos)[dstW + 0] =
        (*filterPos)[dstW + 1] =
        (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
                                                          * read over the end */
        for (i = 0; i < *outFilterSize; i++) {
            int k = (dstW - 1) * (*outFilterSize) + i;
    
            (*outFilter)[k + 1 * (*outFilterSize)] =
            (*outFilter)[k + 2 * (*outFilterSize)] =
            (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
    
    #if HAVE_MMXEXT && HAVE_INLINE_ASM
    
    static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode,
                               int16_t *filter, int32_t *filterPos, int numSplits)
    
    {
        uint8_t *fragmentA;
        x86_reg imm8OfPShufW1A;
        x86_reg imm8OfPShufW2A;
        x86_reg fragmentLengthA;
        uint8_t *fragmentB;
        x86_reg imm8OfPShufW1B;
        x86_reg imm8OfPShufW2B;
        x86_reg fragmentLengthB;
        int fragmentPos;
    
        int xpos, i;
    
        // create an optimized horizontal scaling routine
    
        /* This scaler is made of runtime-generated MMX2 code using specially tuned
         * pshufw instructions. For every four output pixels, if four input pixels
         * are enough for the fast bilinear scaling, then a chunk of fragmentB is
         * used. If five input pixels are needed, then a chunk of fragmentA is used.
    
        // code fragment
    
        __asm__ volatile (
    
            "0:                                             \n\t"
            "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
            "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
            "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
            "punpcklbw                %%mm7, %%mm1          \n\t"
            "punpcklbw                %%mm7, %%mm0          \n\t"
            "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
            "1:                                             \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
            "2:                                             \n\t"
            "psubw                    %%mm1, %%mm0          \n\t"
            "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
            "pmullw                   %%mm3, %%mm0          \n\t"
            "psllw                       $7, %%mm1          \n\t"
            "paddw                    %%mm1, %%mm0          \n\t"
    
            "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
    
            "add                         $8, %%"REG_a"      \n\t"
    
            // "int $3                                         \n\t"
            "lea       " LOCAL_MANGLE(0b) ", %0             \n\t"
            "lea       " LOCAL_MANGLE(1b) ", %1             \n\t"
            "lea       " LOCAL_MANGLE(2b) ", %2             \n\t"
    
            "dec                         %1                 \n\t"
            "dec                         %2                 \n\t"
            "sub                         %0, %1             \n\t"
            "sub                         %0, %2             \n\t"
    
            "lea       " LOCAL_MANGLE(9b) ", %3             \n\t"
    
            : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
              "=r" (fragmentLengthA)
            );
    
        __asm__ volatile (
    
            "0:                                             \n\t"
            "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
            "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
            "punpcklbw                %%mm7, %%mm0          \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
            "1:                                             \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
            "2:                                             \n\t"
            "psubw                    %%mm1, %%mm0          \n\t"
            "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
            "pmullw                   %%mm3, %%mm0          \n\t"
            "psllw                       $7, %%mm1          \n\t"
            "paddw                    %%mm1, %%mm0          \n\t"
    
            "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
    
            "add                         $8, %%"REG_a"      \n\t"
    
            // "int                       $3                   \n\t"
            "lea       " LOCAL_MANGLE(0b) ", %0             \n\t"
            "lea       " LOCAL_MANGLE(1b) ", %1             \n\t"
            "lea       " LOCAL_MANGLE(2b) ", %2             \n\t"
    
            "dec                         %1                 \n\t"
            "dec                         %2                 \n\t"
            "sub                         %0, %1             \n\t"
            "sub                         %0, %2             \n\t"
    
            "lea       " LOCAL_MANGLE(9b) ", %3             \n\t"
    
            : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
              "=r" (fragmentLengthB)
            );
    
        xpos        = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
        fragmentPos = 0;
    
        for (i = 0; i < dstW / numSplits; i++) {
            int xx = xpos >> 16;
    
            if ((i & 3) == 0) {
                int a                  = 0;
                int b                  = ((xpos + xInc) >> 16) - xx;
                int c                  = ((xpos + xInc * 2) >> 16) - xx;
                int d                  = ((xpos + xInc * 3) >> 16) - xx;
                int inc                = (d + 1 < 4);
                uint8_t *fragment      = (d + 1 < 4) ? fragmentB : fragmentA;
                x86_reg imm8OfPShufW1  = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
                x86_reg imm8OfPShufW2  = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
                x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
                int maxShift           = 3 - (d + inc);
                int shift              = 0;
    
                    filter[i]        = ((xpos              & 0xFFFF) ^ 0xFFFF) >> 9;
                    filter[i + 1]    = (((xpos + xInc)     & 0xFFFF) ^ 0xFFFF) >> 9;
                    filter[i + 2]    = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
                    filter[i + 3]    = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
                    filterPos[i / 2] = xx;
    
    
                    memcpy(filterCode + fragmentPos, fragment, fragmentLength);
    
    
                    filterCode[fragmentPos + imm8OfPShufW1] =  (a + inc)       |
                                                              ((b + inc) << 2) |
                                                              ((c + inc) << 4) |
                                                              ((d + inc) << 6);
                    filterCode[fragmentPos + imm8OfPShufW2] =  a | (b << 2) |
                                                                   (c << 4) |
                                                                   (d << 6);
    
                    if (i + 4 - inc >= dstW)
                        shift = maxShift;               // avoid overread
                    else if ((filterPos[i / 2] & 3) <= maxShift)
                        shift = filterPos[i / 2] & 3;   // align
    
                    if (shift && i >= shift) {
                        filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
                        filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
                        filterPos[i / 2]                        -= shift;
    
                fragmentPos += fragmentLength;
    
                    filterCode[fragmentPos] = RET;
    
            filterPos[((i / 2) + 1) & (~1)] = xpos >> 16;  // needed to jump to the next part
    
    #endif /* HAVE_MMXEXT && HAVE_INLINE_ASM */
    
    
    static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
    {
        *h = av_pix_fmt_descriptors[format].log2_chroma_w;
        *v = av_pix_fmt_descriptors[format].log2_chroma_h;
    }
    
    
    int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
                                 int srcRange, const int table[4], int dstRange,
                                 int brightness, int contrast, int saturation)
    
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
        memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
    
        c->brightness = brightness;
        c->contrast   = contrast;
        c->saturation = saturation;
        c->srcRange   = srcRange;
        c->dstRange   = dstRange;
        if (isYUV(c->dstFormat) || isGray(c->dstFormat))
            return -1;
    
        c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
        c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
    
    
        ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
                                 contrast, saturation);
        // FIXME factorize
    
        if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
    
            ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
                                           contrast, saturation);
    
    int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
                                 int *srcRange, int **table, int *dstRange,
                                 int *brightness, int *contrast, int *saturation)
    
        if (isYUV(c->dstFormat) || isGray(c->dstFormat))
            return -1;
    
        *inv_table  = c->srcColorspaceTable;
        *table      = c->dstColorspaceTable;
        *srcRange   = c->srcRange;
        *dstRange   = c->dstRange;
        *brightness = c->brightness;
        *contrast   = c->contrast;
        *saturation = c->saturation;
    
    
        return 0;
    }
    
    static int handle_jpeg(enum PixelFormat *format)
    {
        switch (*format) {
    
        case PIX_FMT_YUVJ420P:
            *format = PIX_FMT_YUV420P;
            return 1;
        case PIX_FMT_YUVJ422P:
            *format = PIX_FMT_YUV422P;
            return 1;
        case PIX_FMT_YUVJ444P:
            *format = PIX_FMT_YUV444P;
            return 1;
        case PIX_FMT_YUVJ440P:
            *format = PIX_FMT_YUV440P;
            return 1;
        default:
            return 0;
    
    SwsContext *sws_alloc_context(void)
    {
    
        SwsContext *c = av_mallocz(sizeof(SwsContext));
    
    av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
                                 SwsFilter *dstFilter)
    
        int i;
        int usesVFilter, usesHFilter;
        int unscaled;
    
        SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
        int srcW              = c->srcW;
        int srcH              = c->srcH;
        int dstW              = c->dstW;
        int dstH              = c->dstH;
        int dst_stride        = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
        int dst_stride_px     = dst_stride >> 1;
    
        enum PixelFormat srcFormat = c->srcFormat;
        enum PixelFormat dstFormat = c->dstFormat;
    
        cpu_flags = av_get_cpu_flags();
        flags     = c->flags;
    
    Ronald S. Bultje's avatar
    Ronald S. Bultje committed
        emms_c();
    
        if (!rgb15to16)
            sws_rgb2rgb_init();
    
    
        unscaled = (srcW == dstW && srcH == dstH);
    
    
        if (!sws_isSupportedInput(srcFormat)) {
    
            av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
                   sws_format_name(srcFormat));
    
        if (!sws_isSupportedOutput(dstFormat)) {
    
            av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
                   sws_format_name(dstFormat));
    
        i = flags & (SWS_POINT         |
                     SWS_AREA          |
                     SWS_BILINEAR      |
                     SWS_FAST_BILINEAR |
                     SWS_BICUBIC       |
                     SWS_X             |
                     SWS_GAUSS         |
                     SWS_LANCZOS       |
                     SWS_SINC          |
                     SWS_SPLINE        |
                     SWS_BICUBLIN);
        if (!i || (i & (i - 1))) {
            av_log(c, AV_LOG_ERROR,
                   "Exactly one scaler algorithm must be chosen\n");
    
        if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
            /* FIXME check if these are enough and try to lower them after
             * fixing the relevant parts of the code */
    
            av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
    
        if (!dstFilter)
            dstFilter = &dummyFilter;
        if (!srcFilter)
            srcFilter = &dummyFilter;
    
        c->lumXInc      = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
        c->lumYInc      = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
    
        c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
        c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
    
        c->vRounder     = 4 * 0x0001000100010001ULL;
    
        usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
                      (srcFilter->chrV && srcFilter->chrV->length > 1) ||
                      (dstFilter->lumV && dstFilter->lumV->length > 1) ||
                      (dstFilter->chrV && dstFilter->chrV->length > 1);
        usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
                      (srcFilter->chrH && srcFilter->chrH->length > 1) ||
                      (dstFilter->lumH && dstFilter->lumH->length > 1) ||
                      (dstFilter->chrH && dstFilter->chrH->length > 1);
    
    
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
    
    
        /* reuse chroma for 2 pixels RGB/BGR unless user wants full
         * chroma interpolation */
    
            isAnyRGB(dstFormat)        &&
            dstFormat != PIX_FMT_RGBA  &&
            dstFormat != PIX_FMT_ARGB  &&
            dstFormat != PIX_FMT_BGRA  &&
            dstFormat != PIX_FMT_ABGR  &&
    
            dstFormat != PIX_FMT_RGB24 &&
            dstFormat != PIX_FMT_BGR24) {
            av_log(c, AV_LOG_ERROR,
                   "full chroma interpolation for destination format '%s' not yet implemented\n",
                   sws_format_name(dstFormat));
    
            flags   &= ~SWS_FULL_CHR_H_INT;
    
        if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
            c->chrDstHSubSample = 1;
    
    
        // drop some chroma lines if the user wants it
    
        c->vChrDrop          = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
                               SWS_SRC_V_CHR_DROP_SHIFT;
        c->chrSrcVSubSample += c->vChrDrop;
    
        /* drop every other pixel for chroma calculation unless user
         * wants full chroma */
        if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP)   &&
            srcFormat != PIX_FMT_RGB8 && srcFormat != PIX_FMT_BGR8 &&
            srcFormat != PIX_FMT_RGB4 && srcFormat != PIX_FMT_BGR4 &&
            srcFormat != PIX_FMT_RGB4_BYTE && srcFormat != PIX_FMT_BGR4_BYTE &&
            ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
             (flags & SWS_FAST_BILINEAR)))
            c->chrSrcHSubSample = 1;
    
    
        // Note the -((-x)>>y) is so that we always round toward +inf.
    
        c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
        c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
        c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
        c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
    
        if (unscaled && !usesHFilter && !usesVFilter &&
            (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
    
            ff_get_unscaled_swscale(c);
    
            if (c->swScale) {
    
                if (flags & SWS_PRINT_INFO)
                    av_log(c, AV_LOG_INFO,
                           "using unscaled %s -> %s special converter\n",
    
                           sws_format_name(srcFormat), sws_format_name(dstFormat));
    
        c->srcBpc = 1 + av_pix_fmt_descriptors[srcFormat].comp[0].depth_minus1;
        if (c->srcBpc < 8)
            c->srcBpc = 8;
        c->dstBpc = 1 + av_pix_fmt_descriptors[dstFormat].comp[0].depth_minus1;
        if (c->dstBpc < 8)
            c->dstBpc = 8;
        if (c->dstBpc == 16)
    
            dst_stride <<= 1;
    
        FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
    
                         (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
    
        if (HAVE_MMXEXT && HAVE_INLINE_ASM && cpu_flags & AV_CPU_FLAG_MMXEXT &&
    
            c->srcBpc == 8 && c->dstBpc <= 10) {
            c->canMMX2BeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
                                (srcW & 15) == 0) ? 1 : 0;
            if (!c->canMMX2BeUsed && dstW >= srcW && (srcW & 15) == 0
                && (flags & SWS_FAST_BILINEAR)) {
                if (flags & SWS_PRINT_INFO)
                    av_log(c, AV_LOG_INFO,
                           "output width is not a multiple of 32 -> no MMX2 scaler\n");
    
            if (usesHFilter)
                c->canMMX2BeUsed = 0;
        } else
            c->canMMX2BeUsed = 0;
    
        c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
        c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
    
        /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
         * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
         * correct scaling.
         * n-2 is the last chrominance sample available.
         * This is not perfect, but no one should notice the difference, the more
         * correct variant would be like the vertical one, but that would require
         * some special code for the first and last pixel */