Skip to content
Snippets Groups Projects
h264.h 48.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
     * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
    
     * @file libavcodec/h264.h
    
     * H.264 / AVC / MPEG4 part10 codec.
     * @author Michael Niedermayer <michaelni@gmx.at>
     */
    
    
    #ifndef AVCODEC_H264_H
    #define AVCODEC_H264_H
    
    
    #include "dsputil.h"
    #include "cabac.h"
    #include "mpegvideo.h"
    
    #include "rectangle.h"
    
    
    #define interlaced_dct interlaced_dct_is_a_bad_name
    
    Diego Biurrun's avatar
    Diego Biurrun committed
    #define mb_intra mb_intra_is_not_initialized_see_mb_type
    
    
    #define LUMA_DC_BLOCK_INDEX   25
    #define CHROMA_DC_BLOCK_INDEX 26
    
    #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
    #define COEFF_TOKEN_VLC_BITS           8
    #define TOTAL_ZEROS_VLC_BITS           9
    #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
    #define RUN_VLC_BITS                   3
    #define RUN7_VLC_BITS                  6
    
    #define MAX_SPS_COUNT 32
    #define MAX_PPS_COUNT 256
    
    #define MAX_MMCO_COUNT 66
    
    
    /* Compiling in interlaced support reduces the speed
     * of progressive decoding by about 2%. */
    #define ALLOW_INTERLACE
    
    
    #define ALLOW_NOCHROMA
    
    
    /**
     * The maximum number of slices supported by the decoder.
     * must be a power of 2
     */
    #define MAX_SLICES 16
    
    
    #ifdef ALLOW_INTERLACE
    #define MB_MBAFF h->mb_mbaff
    #define MB_FIELD h->mb_field_decoding_flag
    #define FRAME_MBAFF h->mb_aff_frame
    
    Carl Eugen Hoyos's avatar
    Carl Eugen Hoyos committed
    #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
    
    #else
    #define MB_MBAFF 0
    #define MB_FIELD 0
    #define FRAME_MBAFF 0
    
    #define FIELD_PICTURE 0
    
    #undef  IS_INTERLACED
    #define IS_INTERLACED(mb_type) 0
    #endif
    
    #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
    
    #ifdef ALLOW_NOCHROMA
    #define CHROMA h->sps.chroma_format_idc
    #else
    #define CHROMA 1
    #endif
    
    
    #define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
    #define MB_TYPE_8x8DCT     0x01000000
    #define IS_REF0(a)         ((a) & MB_TYPE_REF0)
    #define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
    
    
    /**
     * Value of Picture.reference when Picture is not a reference picture, but
     * is held for delayed output.
     */
    #define DELAYED_PIC_REF 4
    
    
    
        NAL_SLICE=1,
        NAL_DPA,
        NAL_DPB,
        NAL_DPC,
        NAL_IDR_SLICE,
        NAL_SEI,
        NAL_SPS,
        NAL_PPS,
        NAL_AUD,
        NAL_END_SEQUENCE,
        NAL_END_STREAM,
        NAL_FILLER_DATA,
        NAL_SPS_EXT,
        NAL_AUXILIARY_SLICE=19
    
    /**
     * SEI message types
     */
    typedef enum {
    
        SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
    
        SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
        SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
        SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
    } SEI_Type;
    
    
    /**
     * pic_struct in picture timing SEI message
     */
    typedef enum {
        SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
        SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
        SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
        SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
        SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
        SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
        SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
        SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
        SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
    } SEI_PicStructType;
    
    
    /**
     * Sequence parameter set
     */
    typedef struct SPS{
    
        int profile_idc;
        int level_idc;
    
        int chroma_format_idc;
    
        int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
        int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
        int poc_type;                      ///< pic_order_cnt_type
        int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
        int delta_pic_order_always_zero_flag;
        int offset_for_non_ref_pic;
        int offset_for_top_to_bottom_field;
        int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
        int ref_frame_count;               ///< num_ref_frames
        int gaps_in_frame_num_allowed_flag;
    
        int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
        int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
    
        int frame_mbs_only_flag;
        int mb_aff;                        ///<mb_adaptive_frame_field_flag
        int direct_8x8_inference_flag;
        int crop;                   ///< frame_cropping_flag
    
        unsigned int crop_left;            ///< frame_cropping_rect_left_offset
        unsigned int crop_right;           ///< frame_cropping_rect_right_offset
        unsigned int crop_top;             ///< frame_cropping_rect_top_offset
        unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
    
        int vui_parameters_present_flag;
        AVRational sar;
    
        int video_signal_type_present_flag;
        int full_range;
        int colour_description_present_flag;
        enum AVColorPrimaries color_primaries;
        enum AVColorTransferCharacteristic color_trc;
        enum AVColorSpace colorspace;
    
        int timing_info_present_flag;
        uint32_t num_units_in_tick;
        uint32_t time_scale;
        int fixed_frame_rate_flag;
        short offset_for_ref_frame[256]; //FIXME dyn aloc?
        int bitstream_restriction_flag;
        int num_reorder_frames;
        int scaling_matrix_present;
        uint8_t scaling_matrix4[6][16];
        uint8_t scaling_matrix8[2][64];
    
        int nal_hrd_parameters_present_flag;
        int vcl_hrd_parameters_present_flag;
        int pic_struct_present_flag;
        int time_offset_length;
    
        int cpb_cnt;                       ///< See H.264 E.1.2
    
        int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
    
        int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
        int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
    
        int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
        int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
        int residual_color_transform_flag; ///< residual_colour_transform_flag
    
    }SPS;
    
    /**
     * Picture parameter set
     */
    typedef struct PPS{
        unsigned int sps_id;
        int cabac;                  ///< entropy_coding_mode_flag
        int pic_order_present;      ///< pic_order_present_flag
        int slice_group_count;      ///< num_slice_groups_minus1 + 1
        int mb_slice_group_map_type;
        unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
        int weighted_pred;          ///< weighted_pred_flag
        int weighted_bipred_idc;
        int init_qp;                ///< pic_init_qp_minus26 + 26
        int init_qs;                ///< pic_init_qs_minus26 + 26
    
        int chroma_qp_index_offset[2];
    
        int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
        int constrained_intra_pred; ///< constrained_intra_pred_flag
        int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
        int transform_8x8_mode;     ///< transform_8x8_mode_flag
        uint8_t scaling_matrix4[6][16];
        uint8_t scaling_matrix8[2][64];
    
        uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
    
    }PPS;
    
    /**
     * Memory management control operation opcode.
     */
    typedef enum MMCOOpcode{
        MMCO_END=0,
        MMCO_SHORT2UNUSED,
        MMCO_LONG2UNUSED,
        MMCO_SHORT2LONG,
        MMCO_SET_MAX_LONG,
        MMCO_RESET,
        MMCO_LONG,
    } MMCOOpcode;
    
    /**
     * Memory management control operation.
     */
    typedef struct MMCO{
        MMCOOpcode opcode;
    
        int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
        int long_arg;       ///< index, pic_num, or num long refs depending on opcode
    
    } MMCO;
    
    /**
     * H264Context
     */
    typedef struct H264Context{
        MpegEncContext s;
        int nal_ref_idc;
        int nal_unit_type;
    
        uint8_t *rbsp_buffer[2];
        unsigned int rbsp_buffer_size[2];
    
    
        /**
          * Used to parse AVC variant of h264
          */
        int is_avc; ///< this flag is != 0 if codec is avc1
        int got_avcC; ///< flag used to parse avcC data only once
        int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
    
    
    
        int prev_mb_skipped;
        int next_mb_skipped;
    
        //prediction stuff
        int chroma_pred_mode;
        int intra16x16_pred_mode;
    
        int top_mb_xy;
        int left_mb_xy[2];
    
        int8_t intra4x4_pred_mode_cache[5*8];
        int8_t (*intra4x4_pred_mode)[8];
    
        unsigned int topleft_samples_available;
        unsigned int top_samples_available;
        unsigned int topright_samples_available;
        unsigned int left_samples_available;
        uint8_t (*top_borders[2])[16+2*8];
        uint8_t left_border[2*(17+2*9)];
    
        /**
         * non zero coeff count cache.
         * is 64 if not available.
         */
        DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
        uint8_t (*non_zero_count)[16];
    
        /**
         * Motion vector cache.
         */
        DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
        DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
    #define LIST_NOT_USED -1 //FIXME rename?
    #define PART_NOT_AVAILABLE -2
    
        /**
         * is 1 if the specific list MV&references are set to 0,0,-2.
         */
        int mv_cache_clean[2];
    
        /**
         * number of neighbors (top and/or left) that used 8x8 dct
         */
        int neighbor_transform_size;
    
        /**
         * block_offset[ 0..23] for frame macroblocks
         * block_offset[24..47] for field macroblocks
         */
        int block_offset[2*(16+8)];
    
        uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
        uint32_t *mb2b8_xy;
        int b_stride; //FIXME use s->b4_stride
        int b8_stride;
    
        int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
        int mb_uvlinesize;
    
        int emu_edge_width;
        int emu_edge_height;
    
        int halfpel_flag;
        int thirdpel_flag;
    
        int unknown_svq3_flag;
        int next_slice_index;
    
    
        SPS *sps_buffers[MAX_SPS_COUNT];
    
        SPS sps; ///< current sps
    
    
        PPS *pps_buffers[MAX_PPS_COUNT];
    
        /**
         * current pps
         */
        PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
    
        uint32_t dequant4_buffer[6][52][16];
        uint32_t dequant8_buffer[2][52][64];
        uint32_t (*dequant4_coeff[6])[16];
        uint32_t (*dequant8_coeff[2])[64];
        int dequant_coeff_pps;     ///< reinit tables when pps changes
    
        int slice_num;
    
        uint16_t *slice_table_base;
        uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
    
        int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
    
        int slice_type_fixed;
    
        //interlacing specific flags
        int mb_aff_frame;
        int mb_field_decoding_flag;
        int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
    
    
        DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]);
    
    
        //POC stuff
        int poc_lsb;
        int poc_msb;
        int delta_poc_bottom;
        int delta_poc[2];
        int frame_num;
        int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
        int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
        int frame_num_offset;         ///< for POC type 2
        int prev_frame_num_offset;    ///< for POC type 2
        int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
    
        /**
    
         * frame_num for frames or 2*frame_num+1 for field pics.
    
         */
        int curr_pic_num;
    
        /**
         * max_frame_num or 2*max_frame_num for field pics.
         */
        int max_pic_num;
    
        //Weighted pred stuff
        int use_weight;
        int use_weight_chroma;
        int luma_log2_weight_denom;
        int chroma_log2_weight_denom;
        int luma_weight[2][48];
        int luma_offset[2][48];
        int chroma_weight[2][48][2];
        int chroma_offset[2][48][2];
        int implicit_weight[48][48];
    
        //deblock
        int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
        int slice_alpha_c0_offset;
        int slice_beta_offset;
    
        int redundant_pic_count;
    
        int direct_spatial_mv_pred;
        int dist_scale_factor[16];
    
        int dist_scale_factor_field[2][32];
    
        int map_col_to_list0[2][16+32];
        int map_col_to_list0_field[2][2][16+32];
    
    
        /**
         * num_ref_idx_l0/1_active_minus1 + 1
         */
        unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
        unsigned int list_count;
        Picture *short_ref[32];
        Picture *long_ref[32];
    
        Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
        Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
                                              Reordered version of default_ref_list
                                              according to picture reordering in slice header */
    
        int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
    
        Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
    
    
        /**
         * memory management control operations buffer.
         */
        MMCO mmco[MAX_MMCO_COUNT];
        int mmco_index;
    
        int long_ref_count;  ///< number of actual long term references
        int short_ref_count; ///< number of actual short term references
    
        //data partitioning
        GetBitContext intra_gb;
        GetBitContext inter_gb;
        GetBitContext *intra_gb_ptr;
        GetBitContext *inter_gb_ptr;
    
    
    Loren Merritt's avatar
    Loren Merritt committed
        DECLARE_ALIGNED_16(DCTELEM, mb[16*24]);
    
    Diego Biurrun's avatar
    Diego Biurrun committed
        DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
    
    
        /**
         * Cabac
         */
        CABACContext cabac;
        uint8_t      cabac_state[460];
        int          cabac_init_idc;
    
        /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
        uint16_t     *cbp_table;
        int cbp;
        int top_cbp;
        int left_cbp;
        /* chroma_pred_mode for i4x4 or i16x16, else 0 */
        uint8_t     *chroma_pred_mode_table;
        int         last_qscale_diff;
        int16_t     (*mvd_table[2])[2];
        DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
        uint8_t     *direct_table;
        uint8_t     direct_cache[5*8];
    
        uint8_t zigzag_scan[16];
        uint8_t zigzag_scan8x8[64];
        uint8_t zigzag_scan8x8_cavlc[64];
        uint8_t field_scan[16];
        uint8_t field_scan8x8[64];
        uint8_t field_scan8x8_cavlc[64];
        const uint8_t *zigzag_scan_q0;
        const uint8_t *zigzag_scan8x8_q0;
        const uint8_t *zigzag_scan8x8_cavlc_q0;
        const uint8_t *field_scan_q0;
        const uint8_t *field_scan8x8_q0;
        const uint8_t *field_scan8x8_cavlc_q0;
    
        int x264_build;
    
    
        /**
         * @defgroup multithreading Members for slice based multithreading
         * @{
         */
        struct H264Context *thread_context[MAX_THREADS];
    
        /**
         * current slice number, used to initalize slice_num of each thread/context
         */
        int current_slice;
    
        /**
         * Max number of threads / contexts.
         * This is equal to AVCodecContext.thread_count unless
         * multithreaded decoding is impossible, in which case it is
         * reduced to 1.
         */
        int max_contexts;
    
        /**
         *  1 if the single thread fallback warning has already been
         *  displayed, 0 otherwise.
         */
        int single_decode_warning;
    
        int last_slice_type;
        /** @} */
    
    
        uint32_t svq3_watermark_key;
    
    
        /**
         * pic_struct in picture timing SEI message
         */
        SEI_PicStructType sei_pic_struct;
    
         * Complement sei_pic_struct
         * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
         * However, soft telecined frames may have these values.
         * This is used in an attempt to flag soft telecine progressive.
         */
        int prev_interlaced_frame;
    
        /**
    
         * Bit set of clock types for fields/frames in picture timing SEI message.
         * For each found ct_type, appropriate bit is set (e.g., bit 1 for
         * interlaced).
         */
        int sei_ct_type;
    
    
        /**
         * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
         */
        int sei_dpb_output_delay;
    
    
        /**
         * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
         */
        int sei_cpb_removal_delay;
    
    
        /**
         * recovery_frame_cnt from SEI message
         *
         * Set to -1 if no recovery point SEI message found or to number of frames
         * before playback synchronizes. Frames having recovery point are key
         * frames.
         */
        int sei_recovery_frame_cnt;
    
    
    
        int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
        int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
    
    
        // Timestamp stuff
        int sei_buffering_period_present;  ///< Buffering period SEI flag
        int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
    
    
    extern const uint8_t ff_h264_chroma_qp[52];
    
    
    
    /**
     * Decode SEI
     */
    int ff_h264_decode_sei(H264Context *h);
    
    /**
     * Decode SPS
     */
    int ff_h264_decode_seq_parameter_set(H264Context *h);
    
    /**
     * Decode PPS
     */
    int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
    
    /**
     * Decodes a network abstraction layer unit.
     * @param consumed is the number of bytes used as input
     * @param length is the length of the array
     * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
     * @returns decoded bytes, might be src+1 if no escapes
     */
    const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
    
    /**
     * identifies the exact end of the bitstream
     * @return the length of the trailing, or 0 if damaged
     */
    int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
    
    
    /**
     * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
     */
    
    av_cold void ff_h264_free_context(H264Context *h);
    
    /**
     * reconstructs bitstream slice_type.
     */
    int ff_h264_get_slice_type(H264Context *h);
    
    
    /**
     * allocates tables.
     * needs width/height
     */
    int ff_h264_alloc_tables(H264Context *h);
    
    
    /**
     * fills the default_ref_list.
     */
    int ff_h264_fill_default_ref_list(H264Context *h);
    
    int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
    void ff_h264_fill_mbaff_ref_list(H264Context *h);
    void ff_h264_remove_all_refs(H264Context *h);
    
    /**
     * Executes the reference picture marking (memory management control operations).
     */
    int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
    
    int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
    
    
    
    /**
     * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
     */
    int ff_h264_check_intra4x4_pred_mode(H264Context *h);
    
    
    /**
     * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
     */
    int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
    
    void ff_h264_write_back_intra_pred_mode(H264Context *h);
    void ff_h264_hl_decode_mb(H264Context *h);
    int ff_h264_frame_start(H264Context *h);
    av_cold int ff_h264_decode_init(AVCodecContext *avctx);
    av_cold int ff_h264_decode_end(AVCodecContext *avctx);
    
    av_cold void ff_h264_decode_init_vlc(void);
    
    /**
     * decodes a macroblock
     * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
     */
    int ff_h264_decode_mb_cavlc(H264Context *h);
    
    void ff_h264_direct_dist_scale_factor(H264Context * const h);
    void ff_h264_direct_ref_list_init(H264Context * const h);
    void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
    
    
    void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
    void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
    
    
    /**
     * Reset SEI values at the beginning of the frame.
     *
     * @param h H.264 context.
     */
    void ff_h264_reset_sei(H264Context *h);
    
    
    
    /*
    o-o o-o
     / / /
    o-o o-o
     ,---'
    o-o o-o
     / / /
    o-o o-o
    */
    //This table must be here because scan8[constant] must be known at compiletime
    static const uint8_t scan8[16 + 2*4]={
     4+1*8, 5+1*8, 4+2*8, 5+2*8,
     6+1*8, 7+1*8, 6+2*8, 7+2*8,
     4+3*8, 5+3*8, 4+4*8, 5+4*8,
     6+3*8, 7+3*8, 6+4*8, 7+4*8,
     1+1*8, 2+1*8,
     1+2*8, 2+2*8,
     1+4*8, 2+4*8,
     1+5*8, 2+5*8,
    };
    
    static av_always_inline uint32_t pack16to32(int a, int b){
    #if HAVE_BIGENDIAN
       return (b&0xFFFF) + (a<<16);
    #else
       return (a&0xFFFF) + (b<<16);
    #endif
    }
    
    
    /**
     * gets the chroma qp.
     */
    static inline int get_chroma_qp(H264Context *h, int t, int qscale){
        return h->pps.chroma_qp_table[t][qscale];
    }
    
    
    static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
    
    static void fill_caches(H264Context *h, int mb_type, int for_deblock){
        MpegEncContext * const s = &h->s;
        const int mb_xy= h->mb_xy;
        int topleft_xy, top_xy, topright_xy, left_xy[2];
        int topleft_type, top_type, topright_type, left_type[2];
        const uint8_t * left_block;
        int topleft_partition= -1;
        int i;
        static const uint8_t left_block_options[4][8]={
            {0,1,2,3,7,10,8,11},
            {2,2,3,3,8,11,8,11},
            {0,0,1,1,7,10,7,10},
            {0,2,0,2,7,10,7,10}
        };
    
        top_xy     = mb_xy  - (s->mb_stride << FIELD_PICTURE);
    
        //FIXME deblocking could skip the intra and nnz parts.
        if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
            return;
    
        /* Wow, what a mess, why didn't they simplify the interlacing & intra
         * stuff, I can't imagine that these complex rules are worth it. */
    
        topleft_xy = top_xy - 1;
        topright_xy= top_xy + 1;
        left_xy[1] = left_xy[0] = mb_xy-1;
        left_block = left_block_options[0];
        if(FRAME_MBAFF){
            const int pair_xy          = s->mb_x     + (s->mb_y & ~1)*s->mb_stride;
            const int top_pair_xy      = pair_xy     - s->mb_stride;
            const int topleft_pair_xy  = top_pair_xy - 1;
            const int topright_pair_xy = top_pair_xy + 1;
            const int topleft_mb_field_flag  = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
            const int top_mb_field_flag      = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
            const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
            const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
            const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
            const int bottom = (s->mb_y & 1);
            tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
    
            if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
                top_xy -= s->mb_stride;
            }
            if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
                topleft_xy -= s->mb_stride;
            } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
                topleft_xy += s->mb_stride;
                // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
                topleft_partition = 0;
            }
            if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
                topright_xy -= s->mb_stride;
            }
            if (left_mb_field_flag != curr_mb_field_flag) {
                left_xy[1] = left_xy[0] = pair_xy - 1;
                if (curr_mb_field_flag) {
                    left_xy[1] += s->mb_stride;
                    left_block = left_block_options[3];
                } else {
                    left_block= left_block_options[2 - bottom];
                }
            }
        }
    
        h->top_mb_xy = top_xy;
        h->left_mb_xy[0] = left_xy[0];
        h->left_mb_xy[1] = left_xy[1];
        if(for_deblock){
            topleft_type = 0;
            topright_type = 0;
            top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
            left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
            left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
    
            if(MB_MBAFF && !IS_INTRA(mb_type)){
                int list;
                for(list=0; list<h->list_count; list++){
                    //These values where changed for ease of performing MC, we need to change them back
                    //FIXME maybe we can make MC and loop filter use the same values or prevent
                    //the MC code from changing ref_cache and rather use a temporary array.
                    if(USES_LIST(mb_type,list)){
                        int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
                        *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
                        *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
                        ref += h->b8_stride;
                        *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
                        *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
                    }
                }
            }
        }else{
            topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
            top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
            topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
            left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
            left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
    
        if(IS_INTRA(mb_type)){
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
            h->topleft_samples_available=
            h->top_samples_available=
            h->left_samples_available= 0xFFFF;
            h->topright_samples_available= 0xEEEA;
    
            if(!(top_type & type_mask)){
                h->topleft_samples_available= 0xB3FF;
                h->top_samples_available= 0x33FF;
                h->topright_samples_available= 0x26EA;
            }
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
                if(IS_INTERLACED(mb_type)){
                    if(!(left_type[0] & type_mask)){
                        h->topleft_samples_available&= 0xDFFF;
                        h->left_samples_available&= 0x5FFF;
                    }
                    if(!(left_type[1] & type_mask)){
                        h->topleft_samples_available&= 0xFF5F;
                        h->left_samples_available&= 0xFF5F;
                    }
                }else{
                    int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
                                    ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
                    assert(left_xy[0] == left_xy[1]);
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
                        h->topleft_samples_available&= 0xDF5F;
                        h->left_samples_available&= 0x5F5F;
                    }
                }
            }else{
                if(!(left_type[0] & type_mask)){
                    h->topleft_samples_available&= 0xDF5F;
                    h->left_samples_available&= 0x5F5F;
                }
            }
    
            if(!(topleft_type & type_mask))
                h->topleft_samples_available&= 0x7FFF;
    
            if(!(topright_type & type_mask))
                h->topright_samples_available&= 0xFBFF;
    
            if(IS_INTRA4x4(mb_type)){
                if(IS_INTRA4x4(top_type)){
                    h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
                    h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
                    h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
                    h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
                }else{
                    int pred;
                    if(!(top_type & type_mask))
                        pred= -1;
                    else{
                        pred= 2;
                    }
                    h->intra4x4_pred_mode_cache[4+8*0]=
                    h->intra4x4_pred_mode_cache[5+8*0]=
                    h->intra4x4_pred_mode_cache[6+8*0]=
                    h->intra4x4_pred_mode_cache[7+8*0]= pred;
                }
                for(i=0; i<2; i++){
                    if(IS_INTRA4x4(left_type[i])){
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
                    }else{
                        int pred;
                        if(!(left_type[i] & type_mask))
                            pred= -1;
                        else{
                            pred= 2;
                        }
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
                    }
                }
            }
        }
        }
    
    
    /*
    0 . T T. T T T T
    1 L . .L . . . .
    2 L . .L . . . .
    3 . T TL . . . .
    4 L . .L . . . .
    5 L . .. . . . .
    */
    //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
        if(top_type){
            h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
            h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
            h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
            h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
    
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
    
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
    
        }else{
            h->non_zero_count_cache[4+8*0]=
            h->non_zero_count_cache[5+8*0]=
            h->non_zero_count_cache[6+8*0]=
            h->non_zero_count_cache[7+8*0]=
    
            h->non_zero_count_cache[1+8*0]=
            h->non_zero_count_cache[2+8*0]=
    
            h->non_zero_count_cache[1+8*3]=
            h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
    
        }
    
        for (i=0; i<2; i++) {
            if(left_type[i]){
                h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
                h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
            }else{
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
                h->non_zero_count_cache[0+8*1 +   8*i]=
                h->non_zero_count_cache[0+8*4 +   8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
            }
        }
    
        if( h->pps.cabac ) {
            // top_cbp
            if(top_type) {
                h->top_cbp = h->cbp_table[top_xy];
            } else if(IS_INTRA(mb_type)) {
                h->top_cbp = 0x1C0;
            } else {
                h->top_cbp = 0;
            }
            // left_cbp
            if (left_type[0]) {
                h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
            } else if(IS_INTRA(mb_type)) {
                h->left_cbp = 0x1C0;
            } else {
                h->left_cbp = 0;
            }
            if (left_type[0]) {
                h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
            }
            if (left_type[1]) {
                h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
            }
        }
    
    #if 1
        if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
            int list;
            for(list=0; list<h->list_count; list++){
                if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
                    /*if(!h->mv_cache_clean[list]){
                        memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
                        memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
                        h->mv_cache_clean[list]= 1;
                    }*/
                    continue;
                }
                h->mv_cache_clean[list]= 0;
    
                if(USES_LIST(top_type, list)){
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
                    const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
                    *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
                    *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
                    *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
                    *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
                }else{
                    *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
                    *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
                    *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
                    *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
                    *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
                }
    
                for(i=0; i<2; i++){
                    int cache_idx = scan8[0] - 1 + i*2*8;
                    if(USES_LIST(left_type[i], list)){
                        const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
                        const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
                        *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
                        *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];