Skip to content
Snippets Groups Projects
resample.c 15.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michael Niedermayer's avatar
    Michael Niedermayer committed
    /*
     * audio resampling
    
     * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file
     * audio resampling
     * @author Michael Niedermayer <michaelni@gmx.at>
     */
    
    
    #include "libavutil/avassert.h"
    
    #include "resample.h"
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
    
    /**
     * 0th order modified bessel function of the first kind.
     */
    static double bessel(double x){
        double lastv=0;
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        int i;
        static const double inv[100]={
     1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
     1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
     1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
     1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
     1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
     1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
     1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
     1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
     1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
     1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
        };
    
        x= x*x/4;
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
            t *= x*inv[i];
            v += t;
    
            lastv=v;
            t *= x*inv[i + 1];
            v += t;
            av_assert2(i<98);
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        }
        return v;
    }
    
    /**
     * builds a polyphase filterbank.
     * @param factor resampling factor
     * @param scale wanted sum of coefficients for each filter
    
     * @param filter_type  filter type
     * @param kaiser_beta  kaiser window beta
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
     * @return 0 on success, negative on error
     */
    
    static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
                            int filter_type, int kaiser_beta){
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        int ph, i;
        double x, y, w;
    
        double *tab = av_malloc_array(tap_count,  sizeof(*tab));
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        const int center= (tap_count-1)/2;
    
        if (!tab)
            return AVERROR(ENOMEM);
    
        /* if upsampling, only need to interpolate, no filter */
        if (factor > 1.0)
            factor = 1.0;
    
        for(ph=0;ph<phase_count;ph++) {
            double norm = 0;
            for(i=0;i<tap_count;i++) {
                x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
                if (x == 0) y = 1.0;
                else        y = sin(x) / x;
    
                switch(filter_type){
                case SWR_FILTER_TYPE_CUBIC:{
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
                    const float d= -0.5; //first order derivative = -0.5
                    x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
                    if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
                    else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
                    break;}
    
                case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
                    w = 2.0*x / (factor*tap_count) + M_PI;
                    y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
                    break;
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
                    w = 2.0*x / (factor*tap_count*M_PI);
    
                    y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
                    break;
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
                }
    
                tab[i] = y;
                norm += y;
            }
    
            /* normalize so that an uniform color remains the same */
    
                for(i=0;i<tap_count;i++)
    
                    ((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
    
                for(i=0;i<tap_count;i++)
    
                    ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
    
                for(i=0;i<tap_count;i++)
    
                    ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
    
                for(i=0;i<tap_count;i++)
    
                    ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
            }
        }
    #if 0
        {
    #define LEN 1024
            int j,k;
            double sine[LEN + tap_count];
            double filtered[LEN];
            double maxff=-2, minff=2, maxsf=-2, minsf=2;
            for(i=0; i<LEN; i++){
                double ss=0, sf=0, ff=0;
                for(j=0; j<LEN+tap_count; j++)
                    sine[j]= cos(i*j*M_PI/LEN);
                for(j=0; j<LEN; j++){
                    double sum=0;
                    ph=0;
                    for(k=0; k<tap_count; k++)
                        sum += filter[ph * tap_count + k] * sine[k+j];
                    filtered[j]= sum / (1<<FILTER_SHIFT);
                    ss+= sine[j + center] * sine[j + center];
                    ff+= filtered[j] * filtered[j];
                    sf+= sine[j + center] * filtered[j];
                }
                ss= sqrt(2*ss/LEN);
                ff= sqrt(2*ff/LEN);
                sf= 2*sf/LEN;
                maxff= FFMAX(maxff, ff);
                minff= FFMIN(minff, ff);
                maxsf= FFMAX(maxsf, sf);
                minsf= FFMIN(minsf, sf);
                if(i%11==0){
                    av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
                    minff=minsf= 2;
                    maxff=maxsf= -2;
                }
            }
        }
    #endif
    
        av_free(tab);
        return 0;
    }
    
    
    static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
    
                                        double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
    
                                        double precision, int cheby)
    {
    
        double cutoff = cutoff0? cutoff0 : 0.97;
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
        int phase_count= 1<<phase_shift;
    
    
        if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
    
               || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
               || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
    
            c = av_mallocz(sizeof(*c));
    
            c->felem_size= av_get_bytes_per_sample(c->format);
    
    
                c->filter_shift = 15;
                break;
    
                c->filter_shift = 30;
                break;
    
                c->filter_shift = 0;
                break;
    
            default:
                av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
    
            if (filter_size/factor > INT32_MAX/256) {
                av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
                goto error;
            }
    
    
            c->phase_shift   = phase_shift;
            c->phase_mask    = phase_count - 1;
            c->linear        = linear;
            c->factor        = factor;
            c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
    
            c->filter_alloc  = FFALIGN(c->filter_length, 8);
    
            c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
    
            c->filter_type   = filter_type;
            c->kaiser_beta   = kaiser_beta;
    
            if (!c->filter_bank)
                goto error;
    
            if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
    
            memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
            memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        }
    
        c->compensation_distance= 0;
    
        if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
            goto error;
    
        c->ideal_dst_incr = c->dst_incr;
        c->dst_incr_div   = c->dst_incr / c->src_incr;
        c->dst_incr_mod   = c->dst_incr % c->src_incr;
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        c->index= -phase_count*((c->filter_length-1)/2);
        c->frac= 0;
    
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        return c;
    error:
    
        av_freep(&c->filter_bank);
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        av_free(c);
        return NULL;
    }
    
    
    static void resample_free(ResampleContext **c){
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        if(!*c)
            return;
        av_freep(&(*c)->filter_bank);
        av_freep(c);
    }
    
    
    static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        c->compensation_distance= compensation_distance;
    
        if (compensation_distance)
            c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
        else
            c->dst_incr = c->ideal_dst_incr;
    
    
        c->dst_incr_div   = c->dst_incr / c->src_incr;
        c->dst_incr_mod   = c->dst_incr % c->src_incr;
    
    
    static int swri_resample(ResampleContext *c,
                             uint8_t *dst, const uint8_t *src, int *consumed,
                             int src_size, int dst_size, int update_ctx)
    {
        if (c->filter_length == 1 && c->phase_shift == 0) {
            int index= c->index;
            int frac= c->frac;
            int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index;
            int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
            int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr;
    
            dst_size= FFMIN(dst_size, new_size);
    
            c->dsp.resample_one(dst, src, dst_size, index2, incr);
    
            index += dst_size * c->dst_incr_div;
            index += (frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
    
            av_assert2(index >= 0);
            *consumed= index;
            if (update_ctx) {
    
                c->frac   = (frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
    
                c->index = 0;
            }
        } else {
            int64_t end_index = (1LL + src_size - c->filter_length) << c->phase_shift;
            int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
            int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
    
            dst_size = FFMIN(dst_size, delta_n);
    
                *consumed = c->dsp.resample(c, dst, src, dst_size, update_ctx);
    
            } else {
    
        return dst_size;
    }
    
    static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        int i, ret= -1;
    
        int av_unused mm_flags = av_get_cpu_flags();
    
        int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
                        (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
    
        int64_t max_src_size = (INT64_MAX >> (c->phase_shift+1)) / c->src_incr;
    
        if (c->compensation_distance)
            dst_size = FFMIN(dst_size, c->compensation_distance);
    
        src_size = FFMIN(src_size, max_src_size);
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        for(i=0; i<dst->ch_count; i++){
    
            ret= swri_resample(c, dst->ch[i], src->ch[i],
                               consumed, src_size, dst_size, i+1==dst->ch_count);
    
        if(need_emms)
            emms_c();
    
    
        if (c->compensation_distance) {
            c->compensation_distance -= ret;
    
            if (!c->compensation_distance) {
                c->dst_incr     = c->ideal_dst_incr;
                c->dst_incr_div = c->dst_incr / c->src_incr;
                c->dst_incr_mod = c->dst_incr % c->src_incr;
            }
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
        return ret;
    }
    
    static int64_t get_delay(struct SwrContext *s, int64_t base){
    
        int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
    
        num *= 1 << c->phase_shift;
    
        num -= c->index;
        num *= c->src_incr;
        num -= c->frac;
        return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
    
    static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
        ResampleContext *c = s->resample;
    
        // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
    
        // They also make it easier to proof that changes and optimizations do not
    
        // break the upper bound.
    
        int64_t num = s->in_buffer_count + 2LL + in_samples;
        num *= 1 << c->phase_shift;
        num -= c->index;
        num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) << c->phase_shift, AV_ROUND_UP) + 2;
    
        if (c->compensation_distance) {
            if (num > INT_MAX)
                return AVERROR(EINVAL);
    
            num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
        }
        return num;
    }
    
    
    static int resample_flush(struct SwrContext *s) {
        AudioData *a= &s->in_buffer;
        int i, j, ret;
        if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
            return ret;
        av_assert0(a->planar);
        for(i=0; i<a->ch_count; i++){
            for(j=0; j<s->in_buffer_count; j++){
                memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
                    a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
            }
        }
        s->in_buffer_count += (s->in_buffer_count+1)/2;
        return 0;
    }
    
    
    // in fact the whole handle multiple ridiculously small buffers might need more thinking...
    static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
                                     int in_count, int *out_idx, int *out_sz)
    {
        int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
    
        if (c->index >= 0)
            return 0;
    
        if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
            return res;
    
        // copy
        for (n = *out_sz; n < num; n++) {
            for (ch = 0; ch < src->ch_count; ch++) {
                memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
                       src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
            }
        }
    
        // if not enough data is in, return and wait for more
        if (num < c->filter_length + 1) {
            *out_sz = num;
            *out_idx = c->filter_length;
            return INT_MAX;
        }
    
        // else invert
        for (n = 1; n <= c->filter_length; n++) {
            for (ch = 0; ch < src->ch_count; ch++) {
                memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
                       dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
                       c->felem_size);
            }
        }
    
        res = num - *out_sz;
        *out_idx = c->filter_length + (c->index >> c->phase_shift);
    
        *out_sz = FFMAX(*out_sz + c->filter_length,
                        1 + c->filter_length * 2) - *out_idx;
    
    struct Resampler const swri_resampler={
      resample_init,
      resample_free,
      multiple_resample,
    
      resample_flush,
    
      set_compensation,
      get_delay,
    
      get_out_samples,