Newer
Older
//! The tokens module provides fungible multi-currency functionality that
//! implements `MultiCurrency` trait.
//!
//! The tokens module provides functions for:
//!
//! - Querying and setting the balance of a given account.
//! - Getting and managing total issuance.
//! - Balance transfer between accounts.
//! - Depositing and withdrawing balance.
//! - Slashing an account balance.
//!
//! ### Implementations
//!
//! The tokens module provides implementations for following traits.
//!
//! - `MultiCurrency` - Abstraction over a fungible multi-currency system.
//! - `MultiCurrencyExtended` - Extended `MultiCurrency` with additional helper
//! types and methods, like updating balance
//! by a given signed integer amount.
//!
//! ## Interface
//!
//! ### Dispatchable Functions
//!
//! - `transfer` - Transfer some balance to another account.
//! - `transfer_all` - Transfer all balance to another account.
//!
//! ### Genesis Config
//!
//! The tokens module depends on the `GenesisConfig`. Endowed accounts could be
//! configured in genesis configs.
pub use crate::imbalances::{NegativeImbalance, PositiveImbalance};
use frame_support::{
pallet_prelude::*,
traits::{
BalanceStatus as Status, Currency as PalletCurrency, ExistenceRequirement, Get, Imbalance,
LockableCurrency as PalletLockableCurrency, ReservableCurrency as PalletReservableCurrency, SignedImbalance,
WithdrawReasons,
},
};
use frame_system::{ensure_signed, pallet_prelude::*};
use orml_traits::{
account::MergeAccount,
arithmetic::{self, Signed},
BalanceStatus, GetByKey, LockIdentifier, MultiCurrency, MultiCurrencyExtended, MultiLockableCurrency,
MultiReservableCurrency, OnDust,
};
use sp_runtime::{
traits::{
AccountIdConversion, AtLeast32BitUnsigned, Bounded, CheckedAdd, CheckedSub, MaybeSerializeDeserialize, Member,
Saturating, StaticLookup, Zero,
},
};
use sp_std::{
convert::{Infallible, TryFrom, TryInto},
marker,
prelude::*,
vec::Vec,
};
pub struct TransferDust<T, GetAccountId>(marker::PhantomData<(T, GetAccountId)>);
impl<T, GetAccountId> OnDust<T::AccountId, T::CurrencyId, T::Balance> for TransferDust<T, GetAccountId>
where
T: Config,
GetAccountId: Get<T::AccountId>,
{
fn on_dust(who: &T::AccountId, currency_id: T::CurrencyId, amount: T::Balance) {
// transfer the dust to treasury account, ignore the result,
// if failed will leave some dust which still could be recycled.
let _ = <Pallet<T> as MultiCurrency<T::AccountId>>::transfer(currency_id, who, &GetAccountId::get(), amount);
pub struct BurnDust<T>(marker::PhantomData<T>);
impl<T: Config> OnDust<T::AccountId, T::CurrencyId, T::Balance> for BurnDust<T> {
fn on_dust(who: &T::AccountId, currency_id: T::CurrencyId, amount: T::Balance) {
// burn the dust, ignore the result,
// if failed will leave some dust which still could be recycled.
let _ = Pallet::<T>::withdraw(currency_id, who, amount);
/// A single lock on a balance. There can be many of these on an account and
/// they "overlap", so the same balance is frozen by multiple locks.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug)]
pub struct BalanceLock<Balance> {
/// An identifier for this lock. Only one lock may be in existence for
/// each identifier.
pub id: LockIdentifier,
/// The amount which the free balance may not drop below when this lock
/// is in effect.
pub amount: Balance,
}
/// balance information for an account.
#[derive(Encode, Decode, Clone, PartialEq, Eq, Default, RuntimeDebug)]
pub struct AccountData<Balance> {
/// Non-reserved part of the balance. There may still be restrictions on
/// this, but it is the total pool what may in principle be transferred,
/// reserved.
///
/// This is the only balance that matters in terms of most operations on
/// tokens.
pub free: Balance,
/// Balance which is reserved and may not be used at all.
///
/// This can still get slashed, but gets slashed last of all.
///
/// This balance is a 'reserve' balance that other subsystems use in
/// order to set aside tokens that are still 'owned' by the account
/// holder, but which are suspendable.
pub reserved: Balance,
/// The amount that `free` may not drop below when withdrawing.
pub frozen: Balance,
}
impl<Balance: Saturating + Copy + Ord> AccountData<Balance> {
/// The amount that this account's free balance may not be reduced
/// beyond.
pub(crate) fn frozen(&self) -> Balance {
self.frozen
/// The total balance in this account including any that is reserved and
/// ignoring any frozen.
fn total(&self) -> Balance {
self.free.saturating_add(self.reserved)
}
}
pub use module::*;
#[frame_support::pallet]
pub mod module {
use super::*;
pub trait WeightInfo {
fn transfer() -> Weight;
fn transfer_all() -> Weight;
#[pallet::config]
pub trait Config: frame_system::Config {
type Event: From<Event<Self>> + IsType<<Self as frame_system::Config>::Event>;
/// The balance type
type Balance: Parameter + Member + AtLeast32BitUnsigned + Default + Copy + MaybeSerializeDeserialize;
/// The amount type, should be signed version of `Balance`
type Amount: Signed
+ TryInto<Self::Balance>
+ TryFrom<Self::Balance>
+ Parameter
+ Member
+ arithmetic::SimpleArithmetic
+ Default
+ Copy
+ MaybeSerializeDeserialize;
/// The currency ID type
type CurrencyId: Parameter + Member + Copy + MaybeSerializeDeserialize + Ord;
/// Weight information for extrinsics in this module.
type WeightInfo: WeightInfo;
/// The minimum amount required to keep an account.
type ExistentialDeposits: GetByKey<Self::CurrencyId, Self::Balance>;
/// Handler to burn or transfer account's dust
type OnDust: OnDust<Self::AccountId, Self::CurrencyId, Self::Balance>;
#[pallet::error]
pub enum Error<T> {
/// The balance is too low
BalanceTooLow,
/// This operation will cause balance to overflow
BalanceOverflow,
/// This operation will cause total issuance to overflow
TotalIssuanceOverflow,
/// Cannot convert Amount into Balance type
AmountIntoBalanceFailed,
/// Failed because liquidity restrictions due to locking
LiquidityRestrictions,
/// Account still has active reserved
StillHasActiveReserved,
#[pallet::generate_deposit(pub(crate) fn deposit_event)]
pub enum Event<T: Config> {
/// Token transfer success. \[currency_id, from, to, amount\]
Transferred(T::CurrencyId, T::AccountId, T::AccountId, T::Balance),
/// An account was removed whose balance was non-zero but below
/// ExistentialDeposit, resulting in an outright loss. \[account,
/// currency_id, amount\]
DustLost(T::AccountId, T::CurrencyId, T::Balance),
}
/// The total issuance of a token type.
#[pallet::storage]
#[pallet::getter(fn total_issuance)]
pub type TotalIssuance<T: Config> = StorageMap<_, Twox64Concat, T::CurrencyId, T::Balance, ValueQuery>;
/// Any liquidity locks of a token type under an account.
/// NOTE: Should only be accessed when setting, changing and freeing a lock.
#[pallet::storage]
#[pallet::getter(fn locks)]
pub type Locks<T: Config> = StorageDoubleMap<
_,
Blake2_128Concat,
T::AccountId,
Twox64Concat,
T::CurrencyId,
Vec<BalanceLock<T::Balance>>,
ValueQuery,
>;
/// The balance of a token type under an account.
///
/// NOTE: If the total is ever zero, decrease account ref account.
///
/// NOTE: This is only used in the case that this module is used to store
/// balances.
#[pallet::storage]
#[pallet::getter(fn accounts)]
pub type Accounts<T: Config> = StorageDoubleMap<
_,
Blake2_128Concat,
T::AccountId,
Twox64Concat,
T::CurrencyId,
AccountData<T::Balance>,
ValueQuery,
>;
#[pallet::genesis_config]
pub struct GenesisConfig<T: Config> {
pub endowed_accounts: Vec<(T::AccountId, T::CurrencyId, T::Balance)>,
#[cfg(feature = "std")]
impl<T: Config> Default for GenesisConfig<T> {
fn default() -> Self {
GenesisConfig {
endowed_accounts: vec![],
}
}
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#[pallet::genesis_build]
impl<T: Config> GenesisBuild<T> for GenesisConfig<T> {
fn build(&self) {
// ensure no duplicates exist.
let unique_endowed_accounts = self
.endowed_accounts
.iter()
.map(|(account_id, currency_id, _)| (account_id, currency_id))
.collect::<std::collections::BTreeSet<_>>();
assert!(
unique_endowed_accounts.len() == self.endowed_accounts.len(),
"duplicate endowed accounts in genesis."
);
self.endowed_accounts
.iter()
.for_each(|(account_id, currency_id, initial_balance)| {
assert!(
*initial_balance >= T::ExistentialDeposits::get(¤cy_id),
"the balance of any account should always be more than existential deposit.",
);
Pallet::<T>::mutate_account(account_id, *currency_id, |account_data, _| {
account_data.free = *initial_balance
});
TotalIssuance::<T>::mutate(*currency_id, |total_issuance| {
*total_issuance = total_issuance
.checked_add(initial_balance)
.expect("total issuance cannot overflow when building genesis")
});
});
}
}
#[pallet::hooks]
impl<T: Config> Hooks<T::BlockNumber> for Pallet<T> {}
#[pallet::call]
impl<T: Config> Pallet<T> {
/// The dispatch origin for this call must be `Signed` by the
/// transactor.
#[pallet::weight(T::WeightInfo::transfer())]
currency_id: T::CurrencyId,
#[pallet::compact] amount: T::Balance,
) -> DispatchResultWithPostInfo {
let from = ensure_signed(origin)?;
let to = T::Lookup::lookup(dest)?;
<Self as MultiCurrency<_>>::transfer(currency_id, &from, &to, amount)?;
Self::deposit_event(Event::Transferred(currency_id, from, to, amount));
Ok(().into())
/// Transfer all remaining balance to the given account.
/// The dispatch origin for this call must be `Signed` by the
/// transactor.
#[pallet::weight(T::WeightInfo::transfer_all())]
dest: <T::Lookup as StaticLookup>::Source,
currency_id: T::CurrencyId,
let from = ensure_signed(origin)?;
let to = T::Lookup::lookup(dest)?;
let balance = <Self as MultiCurrency<T::AccountId>>::free_balance(currency_id, &from);
<Self as MultiCurrency<T::AccountId>>::transfer(currency_id, &from, &to, balance)?;
Self::deposit_event(Event::Transferred(currency_id, from, to, balance));
Ok(().into())
impl<T: Config> Pallet<T> {
/// Check whether account_id is a module account
pub(crate) fn is_module_account_id(account_id: &T::AccountId) -> bool {
pub(crate) fn try_mutate_account<R, E>(
who: &T::AccountId,
currency_id: T::CurrencyId,
f: impl FnOnce(&mut AccountData<T::Balance>, bool) -> sp_std::result::Result<R, E>,
) -> sp_std::result::Result<R, E> {
Accounts::<T>::try_mutate_exists(who, currency_id, |maybe_account| {
let existed = maybe_account.is_some();
let mut account = maybe_account.take().unwrap_or_default();
f(&mut account, existed).map(move |result| {
let mut handle_dust: Option<T::Balance> = None;
let total = account.total();
*maybe_account = if total.is_zero() {
None
} else {
// if non_zero total is below existential deposit and the account is not a
// module account, should handle the dust.
if total < T::ExistentialDeposits::get(¤cy_id) && !Self::is_module_account_id(who) {
handle_dust = Some(total);
}
Some(account)
};
(existed, maybe_account.is_some(), handle_dust, result)
})
.map(|(existed, exists, handle_dust, result)| {
if existed && !exists {
// If existed before, decrease account provider.
// Ignore the result, because if it failed means that these’s remain consumers,
// and the account storage in frame_system shouldn't be repeaded.
let _ = frame_system::Pallet::<T>::dec_providers(who);
} else if !existed && exists {
// if new, increase account provider
frame_system::Pallet::<T>::inc_providers(who);
if let Some(dust_amount) = handle_dust {
// `OnDust` maybe get/set storage `Accounts` of `who`, trigger handler here
// to avoid some unexpected errors.
T::OnDust::on_dust(who, currency_id, dust_amount);
Self::deposit_event(Event::DustLost(who.clone(), currency_id, dust_amount));
}
pub(crate) fn mutate_account<R>(
who: &T::AccountId,
currency_id: T::CurrencyId,
f: impl FnOnce(&mut AccountData<T::Balance>, bool) -> R,
) -> R {
Self::try_mutate_account(who, currency_id, |account, existed| -> Result<R, Infallible> {
Ok(f(account, existed))
})
.expect("Error is infallible; qed")
}
/// Set free balance of `who` to a new value.
///
/// Note this will not maintain total issuance, and the caller is
/// expected to do it.
pub(crate) fn set_free_balance(currency_id: T::CurrencyId, who: &T::AccountId, amount: T::Balance) {
Self::mutate_account(who, currency_id, |account, _| {
account.free = amount;
});
}
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/// Set reserved balance of `who` to a new value.
///
/// Note this will not maintain total issuance, and the caller is
/// expected to do it.
pub(crate) fn set_reserved_balance(currency_id: T::CurrencyId, who: &T::AccountId, amount: T::Balance) {
Self::mutate_account(who, currency_id, |account, _| {
account.reserved = amount;
});
}
/// Update the account entry for `who` under `currency_id`, given the
/// locks.
pub(crate) fn update_locks(currency_id: T::CurrencyId, who: &T::AccountId, locks: &[BalanceLock<T::Balance>]) {
// update account data
Self::mutate_account(who, currency_id, |account, _| {
account.frozen = Zero::zero();
for lock in locks.iter() {
account.frozen = account.frozen.max(lock.amount);
}
});
// update locks
let existed = <Locks<T>>::contains_key(who, currency_id);
if locks.is_empty() {
<Locks<T>>::remove(who, currency_id);
if existed {
// decrease account ref count when destruct lock
frame_system::Pallet::<T>::dec_consumers(who);
}
} else {
<Locks<T>>::insert(who, currency_id, locks);
if !existed {
// increase account ref count when initialize lock
if frame_system::Pallet::<T>::inc_consumers(who).is_err() {
// No providers for the locks. This is impossible under normal circumstances
// since the funds that are under the lock will themselves be stored in the
// account and therefore will need a reference.
"Warning: Attempt to introduce lock consumer reference, yet no providers. \
This is unexpected but should be safe."
);
impl<T: Config> MultiCurrency<T::AccountId> for Pallet<T> {
type CurrencyId = T::CurrencyId;
type Balance = T::Balance;
fn minimum_balance(currency_id: Self::CurrencyId) -> Self::Balance {
T::ExistentialDeposits::get(¤cy_id)
}
fn total_issuance(currency_id: Self::CurrencyId) -> Self::Balance {
<TotalIssuance<T>>::get(currency_id)
}
fn total_balance(currency_id: Self::CurrencyId, who: &T::AccountId) -> Self::Balance {
Self::accounts(who, currency_id).total()
}
fn free_balance(currency_id: Self::CurrencyId, who: &T::AccountId) -> Self::Balance {
Self::accounts(who, currency_id).free
}
// Ensure that an account can withdraw from their free balance given any
// existing withdrawal restrictions like locks and vesting balance.
// Is a no-op if amount to be withdrawn is zero.
fn ensure_can_withdraw(currency_id: Self::CurrencyId, who: &T::AccountId, amount: Self::Balance) -> DispatchResult {
if amount.is_zero() {
return Ok(());
let new_balance = Self::free_balance(currency_id, who)
.checked_sub(&amount)
.ok_or(Error::<T>::BalanceTooLow)?;
ensure!(
new_balance >= Self::accounts(who, currency_id).frozen(),
Error::<T>::LiquidityRestrictions
);
Ok(())
}
/// Transfer some free balance from `from` to `to`.
/// Is a no-op if value to be transferred is zero or the `from` is the
/// same as `to`.
fn transfer(
currency_id: Self::CurrencyId,
from: &T::AccountId,
to: &T::AccountId,
amount: Self::Balance,
) -> DispatchResult {
if amount.is_zero() || from == to {
return Ok(());
Self::ensure_can_withdraw(currency_id, from, amount)?;
let from_balance = Self::free_balance(currency_id, from);
let to_balance = Self::free_balance(currency_id, to)
.checked_add(&amount)
.ok_or(Error::<T>::BalanceOverflow)?;
// Cannot underflow because ensure_can_withdraw check
Self::set_free_balance(currency_id, from, from_balance - amount);
Self::set_free_balance(currency_id, to, to_balance);
/// Deposit some `amount` into the free balance of account `who`.
///
/// Is a no-op if the `amount` to be deposited is zero.
fn deposit(currency_id: Self::CurrencyId, who: &T::AccountId, amount: Self::Balance) -> DispatchResult {
if amount.is_zero() {
return Ok(());
TotalIssuance::<T>::try_mutate(currency_id, |total_issuance| -> DispatchResult {
*total_issuance = total_issuance
.checked_add(&amount)
.ok_or(Error::<T>::TotalIssuanceOverflow)?;
Self::set_free_balance(currency_id, who, Self::free_balance(currency_id, who) + amount);
fn withdraw(currency_id: Self::CurrencyId, who: &T::AccountId, amount: Self::Balance) -> DispatchResult {
if amount.is_zero() {
return Ok(());
Self::ensure_can_withdraw(currency_id, who, amount)?;
// Cannot underflow because ensure_can_withdraw check
<TotalIssuance<T>>::mutate(currency_id, |v| *v -= amount);
Self::set_free_balance(currency_id, who, Self::free_balance(currency_id, who) - amount);
// Check if `value` amount of free balance can be slashed from `who`.
fn can_slash(currency_id: Self::CurrencyId, who: &T::AccountId, value: Self::Balance) -> bool {
if value.is_zero() {
return true;
Self::free_balance(currency_id, who) >= value
}
/// Is a no-op if `value` to be slashed is zero.
///
/// NOTE: `slash()` prefers free balance, but assumes that reserve
/// balance can be drawn from in extreme circumstances. `can_slash()`
/// should be used prior to `slash()` to avoid having to draw from
/// reserved funds, however we err on the side of punishment if things
/// are inconsistent or `can_slash` wasn't used appropriately.
fn slash(currency_id: Self::CurrencyId, who: &T::AccountId, amount: Self::Balance) -> Self::Balance {
if amount.is_zero() {
return amount;
let account = Self::accounts(who, currency_id);
let free_slashed_amount = account.free.min(amount);
// Cannot underflow becuase free_slashed_amount can never be greater than amount
let mut remaining_slash = amount - free_slashed_amount;
// slash free balance
if !free_slashed_amount.is_zero() {
// Cannot underflow becuase free_slashed_amount can never be greater than
// account.free
Self::set_free_balance(currency_id, who, account.free - free_slashed_amount);
}
// slash reserved balance
if !remaining_slash.is_zero() {
let reserved_slashed_amount = account.reserved.min(remaining_slash);
// Cannot underflow due to above line
remaining_slash -= reserved_slashed_amount;
Self::set_reserved_balance(currency_id, who, account.reserved - reserved_slashed_amount);
// Cannot underflow because the slashed value cannot be greater than total
// issuance
<TotalIssuance<T>>::mutate(currency_id, |v| *v -= amount - remaining_slash);
remaining_slash
}
}
impl<T: Config> MultiCurrencyExtended<T::AccountId> for Pallet<T> {
type Amount = T::Amount;
fn update_balance(currency_id: Self::CurrencyId, who: &T::AccountId, by_amount: Self::Amount) -> DispatchResult {
if by_amount.is_zero() {
return Ok(());
}
// Ensure this doesn't overflow. There isn't any traits that exposes
// `saturating_abs` so we need to do it manually.
let by_amount_abs = if by_amount == Self::Amount::min_value() {
Self::Amount::max_value()
} else {
by_amount.abs()
};
let by_balance =
TryInto::<Self::Balance>::try_into(by_amount_abs).map_err(|_| Error::<T>::AmountIntoBalanceFailed)?;
if by_amount.is_positive() {
Self::deposit(currency_id, who, by_balance)
} else {
Self::withdraw(currency_id, who, by_balance).map(|_| ())
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
impl<T: Config> MultiLockableCurrency<T::AccountId> for Pallet<T> {
type Moment = T::BlockNumber;
// Set a lock on the balance of `who` under `currency_id`.
// Is a no-op if lock amount is zero.
fn set_lock(
lock_id: LockIdentifier,
currency_id: Self::CurrencyId,
who: &T::AccountId,
amount: Self::Balance,
) -> DispatchResult {
if amount.is_zero() {
return Ok(());
}
let mut new_lock = Some(BalanceLock { id: lock_id, amount });
let mut locks = Self::locks(who, currency_id)
.into_iter()
.filter_map(|lock| {
if lock.id == lock_id {
new_lock.take()
} else {
Some(lock)
}
})
.collect::<Vec<_>>();
if let Some(lock) = new_lock {
locks.push(lock)
Self::update_locks(currency_id, who, &locks[..]);
Ok(())
}
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
// Extend a lock on the balance of `who` under `currency_id`.
// Is a no-op if lock amount is zero
fn extend_lock(
lock_id: LockIdentifier,
currency_id: Self::CurrencyId,
who: &T::AccountId,
amount: Self::Balance,
) -> DispatchResult {
if amount.is_zero() {
return Ok(());
}
let mut new_lock = Some(BalanceLock { id: lock_id, amount });
let mut locks = Self::locks(who, currency_id)
.into_iter()
.filter_map(|lock| {
if lock.id == lock_id {
new_lock.take().map(|nl| BalanceLock {
id: lock.id,
amount: lock.amount.max(nl.amount),
})
} else {
Some(lock)
}
})
.collect::<Vec<_>>();
if let Some(lock) = new_lock {
locks.push(lock)
Self::update_locks(currency_id, who, &locks[..]);
Ok(())
}
fn remove_lock(lock_id: LockIdentifier, currency_id: Self::CurrencyId, who: &T::AccountId) -> DispatchResult {
let mut locks = Self::locks(who, currency_id);
locks.retain(|lock| lock.id != lock_id);
Self::update_locks(currency_id, who, &locks[..]);
Ok(())
}
}
impl<T: Config> MultiReservableCurrency<T::AccountId> for Pallet<T> {
/// Check if `who` can reserve `value` from their free balance.
///
/// Always `true` if value to be reserved is zero.
fn can_reserve(currency_id: Self::CurrencyId, who: &T::AccountId, value: Self::Balance) -> bool {
if value.is_zero() {
return true;
Self::ensure_can_withdraw(currency_id, who, value).is_ok()
/// Slash from reserved balance, returning any amount that was unable to
/// be slashed.
///
/// Is a no-op if the value to be slashed is zero.
fn slash_reserved(currency_id: Self::CurrencyId, who: &T::AccountId, value: Self::Balance) -> Self::Balance {
if value.is_zero() {
return value;
let reserved_balance = Self::reserved_balance(currency_id, who);
let actual = reserved_balance.min(value);
Self::set_reserved_balance(currency_id, who, reserved_balance - actual);
<TotalIssuance<T>>::mutate(currency_id, |v| *v -= actual);
value - actual
}
fn reserved_balance(currency_id: Self::CurrencyId, who: &T::AccountId) -> Self::Balance {
Self::accounts(who, currency_id).reserved
}
/// Move `value` from the free balance from `who` to their reserved
/// balance.
///
/// Is a no-op if value to be reserved is zero.
fn reserve(currency_id: Self::CurrencyId, who: &T::AccountId, value: Self::Balance) -> DispatchResult {
if value.is_zero() {
return Ok(());
Self::ensure_can_withdraw(currency_id, who, value)?;
let account = Self::accounts(who, currency_id);
Self::set_free_balance(currency_id, who, account.free - value);
// Cannot overflow becuase total issuance is using the same balance type and
// this doesn't increase total issuance
Self::set_reserved_balance(currency_id, who, account.reserved + value);
Ok(())
}
/// Unreserve some funds, returning any amount that was unable to be
/// unreserved.
///
/// Is a no-op if the value to be unreserved is zero.
fn unreserve(currency_id: Self::CurrencyId, who: &T::AccountId, value: Self::Balance) -> Self::Balance {
if value.is_zero() {
return value;
let account = Self::accounts(who, currency_id);
let actual = account.reserved.min(value);
Self::set_reserved_balance(currency_id, who, account.reserved - actual);
Self::set_free_balance(currency_id, who, account.free + actual);
/// Move the reserved balance of one account into the balance of
/// another, according to `status`.
///
/// Is a no-op if:
/// - the value to be moved is zero; or
/// - the `slashed` id equal to `beneficiary` and the `status` is
/// `Reserved`.
fn repatriate_reserved(
currency_id: Self::CurrencyId,
slashed: &T::AccountId,
beneficiary: &T::AccountId,
value: Self::Balance,
status: BalanceStatus,
) -> sp_std::result::Result<Self::Balance, DispatchError> {
if value.is_zero() {
return Ok(value);
if slashed == beneficiary {
return match status {
BalanceStatus::Free => Ok(Self::unreserve(currency_id, slashed, value)),
BalanceStatus::Reserved => Ok(value.saturating_sub(Self::reserved_balance(currency_id, slashed))),
};
}
let from_account = Self::accounts(slashed, currency_id);
let to_account = Self::accounts(beneficiary, currency_id);
let actual = from_account.reserved.min(value);
match status {
BalanceStatus::Free => {
Self::set_free_balance(currency_id, beneficiary, to_account.free + actual);
BalanceStatus::Reserved => {
Self::set_reserved_balance(currency_id, beneficiary, to_account.reserved + actual);
Self::set_reserved_balance(currency_id, slashed, from_account.reserved - actual);
Ok(value - actual)
pub struct CurrencyAdapter<T, GetCurrencyId>(marker::PhantomData<(T, GetCurrencyId)>);
impl<T, GetCurrencyId> PalletCurrency<T::AccountId> for CurrencyAdapter<T, GetCurrencyId>
where
T: Config,
GetCurrencyId: Get<T::CurrencyId>,
{
type Balance = T::Balance;
type PositiveImbalance = PositiveImbalance<T, GetCurrencyId>;
type NegativeImbalance = NegativeImbalance<T, GetCurrencyId>;
fn total_balance(who: &T::AccountId) -> Self::Balance {
Pallet::<T>::total_balance(GetCurrencyId::get(), who)
}
fn can_slash(who: &T::AccountId, value: Self::Balance) -> bool {
Pallet::<T>::can_slash(GetCurrencyId::get(), who, value)
}
fn total_issuance() -> Self::Balance {
Pallet::<T>::total_issuance(GetCurrencyId::get())
}
fn minimum_balance() -> Self::Balance {
Pallet::<T>::minimum_balance(GetCurrencyId::get())
}
fn burn(mut amount: Self::Balance) -> Self::PositiveImbalance {
if amount.is_zero() {
return PositiveImbalance::zero();
<TotalIssuance<T>>::mutate(GetCurrencyId::get(), |issued| {
*issued = issued.checked_sub(&amount).unwrap_or_else(|| {
amount = *issued;
Zero::zero()
});
PositiveImbalance::new(amount)
}
fn issue(mut amount: Self::Balance) -> Self::NegativeImbalance {
if amount.is_zero() {
return NegativeImbalance::zero();
<TotalIssuance<T>>::mutate(GetCurrencyId::get(), |issued| {
*issued = issued.checked_add(&amount).unwrap_or_else(|| {
amount = Self::Balance::max_value() - *issued;
Self::Balance::max_value()
})
});
NegativeImbalance::new(amount)
}
fn free_balance(who: &T::AccountId) -> Self::Balance {
Pallet::<T>::free_balance(GetCurrencyId::get(), who)
}
fn ensure_can_withdraw(
who: &T::AccountId,
amount: Self::Balance,
_reasons: WithdrawReasons,
_new_balance: Self::Balance,
) -> DispatchResult {
Pallet::<T>::ensure_can_withdraw(GetCurrencyId::get(), who, amount)
}
fn transfer(
source: &T::AccountId,
dest: &T::AccountId,
value: Self::Balance,
_existence_requirement: ExistenceRequirement,
) -> DispatchResult {
<Pallet<T> as MultiCurrency<T::AccountId>>::transfer(GetCurrencyId::get(), &source, &dest, value)
}
fn slash(who: &T::AccountId, value: Self::Balance) -> (Self::NegativeImbalance, Self::Balance) {
if value.is_zero() {
return (Self::NegativeImbalance::zero(), value);
}
let currency_id = GetCurrencyId::get();
let account = Pallet::<T>::accounts(who, currency_id);
let free_slashed_amount = account.free.min(value);
let mut remaining_slash = value - free_slashed_amount;
// slash free balance
if !free_slashed_amount.is_zero() {
Pallet::<T>::set_free_balance(currency_id, who, account.free - free_slashed_amount);
// slash reserved balance
if !remaining_slash.is_zero() {
let reserved_slashed_amount = account.reserved.min(remaining_slash);
remaining_slash -= reserved_slashed_amount;
Pallet::<T>::set_reserved_balance(currency_id, who, account.reserved - reserved_slashed_amount);
(
Self::NegativeImbalance::new(free_slashed_amount + reserved_slashed_amount),
remaining_slash,
)
} else {
(Self::NegativeImbalance::new(value), remaining_slash)
fn deposit_into_existing(
who: &T::AccountId,
value: Self::Balance,
) -> sp_std::result::Result<Self::PositiveImbalance, DispatchError> {
if value.is_zero() {
return Ok(Self::PositiveImbalance::zero());
let currency_id = GetCurrencyId::get();
let new_total = Pallet::<T>::free_balance(currency_id, who)
.checked_add(&value)
.ok_or(Error::<T>::TotalIssuanceOverflow)?;
Pallet::<T>::set_free_balance(currency_id, who, new_total);
Ok(Self::PositiveImbalance::new(value))
}
fn deposit_creating(who: &T::AccountId, value: Self::Balance) -> Self::PositiveImbalance {
Self::deposit_into_existing(who, value).unwrap_or_else(|_| Self::PositiveImbalance::zero())
}
fn withdraw(
who: &T::AccountId,
value: Self::Balance,
_reasons: WithdrawReasons,
_liveness: ExistenceRequirement,
) -> sp_std::result::Result<Self::NegativeImbalance, DispatchError> {
if value.is_zero() {
return Ok(Self::NegativeImbalance::zero());
let currency_id = GetCurrencyId::get();
Pallet::<T>::ensure_can_withdraw(currency_id, who, value)?;
Pallet::<T>::set_free_balance(currency_id, who, Pallet::<T>::free_balance(currency_id, who) - value);
Ok(Self::NegativeImbalance::new(value))
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
fn make_free_balance_be(
who: &T::AccountId,
value: Self::Balance,
) -> SignedImbalance<Self::Balance, Self::PositiveImbalance> {
let currency_id = GetCurrencyId::get();
Pallet::<T>::try_mutate_account(
who,
currency_id,
|account, existed| -> Result<SignedImbalance<Self::Balance, Self::PositiveImbalance>, ()> {
// If we're attempting to set an existing account to less than ED, then
// bypass the entire operation. It's a no-op if you follow it through, but
// since this is an instance where we might account for a negative imbalance
// (in the dust cleaner of set_account) before we account for its actual
// equal and opposite cause (returned as an Imbalance), then in the
// instance that there's no other accounts on the system at all, we might
// underflow the issuance and our arithmetic will be off.
let ed = T::ExistentialDeposits::get(¤cy_id);
ensure!(value.saturating_add(account.reserved) >= ed || existed, ());
let imbalance = if account.free <= value {
SignedImbalance::Positive(PositiveImbalance::new(value - account.free))
} else {
SignedImbalance::Negative(NegativeImbalance::new(account.free - value))
};
account.free = value;
Ok(imbalance)
},
)
.unwrap_or_else(|_| SignedImbalance::Positive(Self::PositiveImbalance::zero()))
}
}
impl<T, GetCurrencyId> PalletReservableCurrency<T::AccountId> for CurrencyAdapter<T, GetCurrencyId>
where
T: Config,
GetCurrencyId: Get<T::CurrencyId>,
{
fn can_reserve(who: &T::AccountId, value: Self::Balance) -> bool {
Pallet::<T>::can_reserve(GetCurrencyId::get(), who, value)
}
fn slash_reserved(who: &T::AccountId, value: Self::Balance) -> (Self::NegativeImbalance, Self::Balance) {
let actual = Pallet::<T>::slash_reserved(GetCurrencyId::get(), who, value);
(Self::NegativeImbalance::zero(), actual)
}