Skip to content
Snippets Groups Projects
aacpsy.c 22.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC encoder psychoacoustic model
     * Copyright (C) 2008 Konstantin Shishkov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
    
     * AAC encoder psychoacoustic model
     */
    
    #include "avcodec.h"
    #include "aactab.h"
    
    
    /***********************************
     *              TODOs:
     * thresholds linearization after their modifications for attaining given bitrate
     * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
     * control quality for quality-based output
     **********************************/
    
    /**
     * constants for 3GPP AAC psychoacoustic model
     * @{
     */
    
    #define PSY_3GPP_SPREAD_HI   1.5f // spreading factor for ascending threshold spreading  (15 dB/Bark)
    #define PSY_3GPP_SPREAD_LOW  3.0f // spreading factor for descending threshold spreading (30 dB/Bark)
    
    
    #define PSY_3GPP_RPEMIN      0.01f
    #define PSY_3GPP_RPELEV      2.0f
    
    
    /* LAME psy model constants */
    #define PSY_LAME_FIR_LEN 21         ///< LAME psy model FIR order
    #define AAC_BLOCK_SIZE_LONG 1024    ///< long block size
    #define AAC_BLOCK_SIZE_SHORT 128    ///< short block size
    #define AAC_NUM_BLOCKS_SHORT 8      ///< number of blocks in a short sequence
    #define PSY_LAME_NUM_SUBBLOCKS 3    ///< Number of sub-blocks in each short block
    
    
    /**
     * @}
     */
    
    /**
     * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
     */
    
    typedef struct AacPsyBand{
    
        float energy;    ///< band energy
        float ffac;      ///< form factor
    
        float thr;       ///< energy threshold
        float min_snr;   ///< minimal SNR
        float thr_quiet; ///< threshold in quiet
    
    /**
     * single/pair channel context for psychoacoustic model
     */
    
    typedef struct AacPsyChannel{
        AacPsyBand band[128];               ///< bands information
        AacPsyBand prev_band[128];          ///< bands information from the previous frame
    
    
        float       win_energy;              ///< sliding average of channel energy
        float       iir_state[2];            ///< hi-pass IIR filter state
        uint8_t     next_grouping;           ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
        enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
    
        /* LAME psy model specific members */
        float attack_threshold;              ///< attack threshold for this channel
        float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
        int   prev_attack;                   ///< attack value for the last short block in the previous sequence
    
    }AacPsyChannel;
    
    /**
     * psychoacoustic model frame type-dependent coefficients
     */
    
    typedef struct AacPsyCoeffs{
    
        float ath       [64]; ///< absolute threshold of hearing per bands
        float barks     [64]; ///< Bark value for each spectral band in long frame
        float spread_low[64]; ///< spreading factor for low-to-high threshold spreading in long frame
        float spread_hi [64]; ///< spreading factor for high-to-low threshold spreading in long frame
    
    /**
     * 3GPP TS26.403-inspired psychoacoustic model specific data
     */
    
    typedef struct AacPsyContext{
        AacPsyCoeffs psy_coef[2];
        AacPsyChannel *ch;
    }AacPsyContext;
    
    /**
     * LAME psy model preset struct
     */
    typedef struct {
        int   quality;  ///< Quality to map the rest of the vaules to.
         /* This is overloaded to be both kbps per channel in ABR mode, and
          * requested quality in constant quality mode.
          */
        float st_lrm;   ///< short threshold for L, R, and M channels
    } PsyLamePreset;
    
    /**
     * LAME psy model preset table for ABR
     */
    static const PsyLamePreset psy_abr_map[] = {
    /* TODO: Tuning. These were taken from LAME. */
    /* kbps/ch st_lrm   */
        {  8,  6.60},
        { 16,  6.60},
        { 24,  6.60},
        { 32,  6.60},
        { 40,  6.60},
        { 48,  6.60},
        { 56,  6.60},
        { 64,  6.40},
        { 80,  6.00},
        { 96,  5.60},
        {112,  5.20},
        {128,  5.20},
        {160,  5.20}
    };
    
    /**
    * LAME psy model preset table for constant quality
    */
    static const PsyLamePreset psy_vbr_map[] = {
    /* vbr_q  st_lrm    */
        { 0,  4.20},
        { 1,  4.20},
        { 2,  4.20},
        { 3,  4.20},
        { 4,  4.20},
        { 5,  4.20},
        { 6,  4.20},
        { 7,  4.20},
        { 8,  4.20},
        { 9,  4.20},
        {10,  4.20}
    };
    
    /**
     * LAME psy model FIR coefficient table
     */
    static const float psy_fir_coeffs[] = {
        -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
        -3.36639e-17 * 2, -0.0438162 * 2,  -1.54175e-17 * 2, 0.0931738 * 2,
        -5.52212e-17 * 2, -0.313819 * 2
    };
    
    /**
     * calculates the attack threshold for ABR from the above table for the LAME psy model
     */
    static float lame_calc_attack_threshold(int bitrate)
    {
        /* Assume max bitrate to start with */
        int lower_range = 12, upper_range = 12;
        int lower_range_kbps = psy_abr_map[12].quality;
        int upper_range_kbps = psy_abr_map[12].quality;
        int i;
    
        /* Determine which bitrates the value specified falls between.
         * If the loop ends without breaking our above assumption of 320kbps was correct.
         */
        for (i = 1; i < 13; i++) {
            if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
                upper_range = i;
                upper_range_kbps = psy_abr_map[i    ].quality;
                lower_range = i - 1;
                lower_range_kbps = psy_abr_map[i - 1].quality;
                break; /* Upper range found */
            }
        }
    
        /* Determine which range the value specified is closer to */
        if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
            return psy_abr_map[lower_range].st_lrm;
        return psy_abr_map[upper_range].st_lrm;
    }
    
    /**
     * LAME psy model specific initialization
     */
    static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) {
    
    
        for (i = 0; i < avctx->channels; i++) {
            AacPsyChannel *pch = &ctx->ch[i];
    
            if (avctx->flags & CODEC_FLAG_QSCALE)
                pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
            else
                pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
    
    
            for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
                pch->prev_energy_subshort[j] = 10.0f;
    
    /**
     * Calculate Bark value for given line.
     */
    
    static av_cold float calc_bark(float f)
    
    {
        return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
    }
    
    
    #define ATH_ADD 4
    /**
     * Calculate ATH value for given frequency.
     * Borrowed from Lame.
     */
    static av_cold float ath(float f, float add)
    {
        f /= 1000.0f;
    
                - 6.8  * exp(-0.6  * (f - 3.4) * (f - 3.4))
                + 6.0  * exp(-0.15 * (f - 8.7) * (f - 8.7))
                + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
    }
    
    
    static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
    
        AacPsyContext *pctx;
    
        int i, j, g, start;
        float prev, minscale, minath;
    
    
        ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
        pctx = (AacPsyContext*) ctx->model_priv_data;
    
        for (j = 0; j < 2; j++) {
    
            AacPsyCoeffs *coeffs = &pctx->psy_coef[j];
    
            float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
    
            for (g = 0; g < ctx->num_bands[j]; g++) {
    
                bark = calc_bark((i-1) * line_to_frequency);
    
                coeffs->barks[g] = (bark + prev) / 2.0;
                prev = bark;
    
            for (g = 0; g < ctx->num_bands[j] - 1; g++) {
    
                coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
                coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
            }
            start = 0;
    
            for (g = 0; g < ctx->num_bands[j]; g++) {
    
                minscale = ath(start * line_to_frequency, ATH_ADD);
    
                for (i = 1; i < ctx->bands[j][g]; i++)
    
                    minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
    
                coeffs->ath[g] = minscale - minath;
                start += ctx->bands[j][g];
            }
        }
    
    
        pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels);
    
    
        lame_window_init(pctx, ctx->avctx);
    
    
        return 0;
    }
    
    /**
     * IIR filter used in block switching decision
     */
    static float iir_filter(int in, float state[2])
    {
        float ret;
    
        ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
        state[0] = in;
        state[1] = ret;
        return ret;
    }
    
    /**
     * window grouping information stored as bits (0 - new group, 1 - group continues)
     */
    static const uint8_t window_grouping[9] = {
        0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
    };
    
    /**
     * Tell encoder which window types to use.
     * @see 3GPP TS26.403 5.4.1 "Blockswitching"
     */
    static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
                                           const int16_t *audio, const int16_t *la,
                                           int channel, int prev_type)
    {
        int i, j;
    
        int br               = ctx->avctx->bit_rate / ctx->avctx->channels;
        int attack_ratio     = br <= 16000 ? 18 : 10;
    
        AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
        AacPsyChannel *pch  = &pctx->ch[channel];
    
        int next_type        = pch->next_window_seq;
    
        FFPsyWindowInfo wi;
    
        memset(&wi, 0, sizeof(wi));
    
            float s[8], v;
            int switch_to_eight = 0;
            float sum = 0.0, sum2 = 0.0;
            int attack_n = 0;
    
            int stay_short = 0;
    
            for (i = 0; i < 8; i++) {
                for (j = 0; j < 128; j++) {
    
    Alex Converse's avatar
    Alex Converse committed
                    v = iir_filter(la[(i*128+j)*ctx->avctx->channels], pch->iir_state);
    
            for (i = 0; i < 8; i++) {
                if (s[i] > pch->win_energy * attack_ratio) {
    
                    switch_to_eight = 1;
                    break;
                }
            }
            pch->win_energy = pch->win_energy*7/8 + sum2/64;
    
            wi.window_type[1] = prev_type;
    
            switch (prev_type) {
    
            case ONLY_LONG_SEQUENCE:
                wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
    
                next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
    
                break;
            case LONG_START_SEQUENCE:
                wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
                grouping = pch->next_grouping;
    
                next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
    
                wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
                next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
    
                stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
                wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
                grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
                next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
    
            pch->next_grouping = window_grouping[attack_n];
    
            pch->next_window_seq = next_type;
    
        } else {
            for (i = 0; i < 3; i++)
    
                wi.window_type[i] = prev_type;
            grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
        }
    
        wi.window_shape   = 1;
    
        if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
    
            wi.num_windows = 1;
            wi.grouping[0] = 1;
    
            for (i = 0; i < 8; i++) {
                if (!((grouping >> i) & 1))
    
                    lastgrp = i;
                wi.grouping[lastgrp]++;
            }
        }
    
        return wi;
    }
    
    /**
     * Calculate band thresholds as suggested in 3GPP TS26.403
     */
    
    static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
    
                                 const float *coefs, const FFPsyWindowInfo *wi)
    
        AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
        AacPsyChannel *pch  = &pctx->ch[channel];
    
        const int num_bands       = ctx->num_bands[wi->num_windows == 8];
    
        const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
    
        AacPsyCoeffs *coeffs     = &pctx->psy_coef[wi->num_windows == 8];
    
    
        //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
    
        for (w = 0; w < wi->num_windows*16; w += 16) {
            for (g = 0; g < num_bands; g++) {
    
                AacPsyBand *band = &pch->band[w+g];
    
                for (i = 0; i < band_sizes[g]; i++)
    
                    band->energy += coefs[start+i] * coefs[start+i];
    
                band->thr     = band->energy * 0.001258925f;
                start        += band_sizes[g];
    
    
                ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
            }
        }
        //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
    
        for (w = 0; w < wi->num_windows*16; w += 16) {
    
            AacPsyBand *band = &pch->band[w];
    
            for (g = 1; g < num_bands; g++)
    
                band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_hi [g]);
    
            for (g = num_bands - 2; g >= 0; g--)
    
                band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_low[g]);
    
            for (g = 0; g < num_bands; g++) {
    
                band[g].thr_quiet = band[g].thr = FFMAX(band[g].thr, coeffs->ath[g]);
    
                if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w)))
    
                    band[g].thr = FFMAX(PSY_3GPP_RPEMIN*band[g].thr, FFMIN(band[g].thr,
                                        PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
    
    
                ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr;
            }
        }
        memcpy(pch->prev_band, pch->band, sizeof(pch->band));
    }
    
    static av_cold void psy_3gpp_end(FFPsyContext *apc)
    {
    
        AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
    
        av_freep(&pctx->ch);
        av_freep(&apc->model_priv_data);
    }
    
    
    static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
    {
        int blocktype = ONLY_LONG_SEQUENCE;
        if (uselongblock) {
            if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
                blocktype = LONG_STOP_SEQUENCE;
        } else {
            blocktype = EIGHT_SHORT_SEQUENCE;
            if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
                ctx->next_window_seq = LONG_START_SEQUENCE;
            if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
                ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
        }
    
        wi->window_type[0] = ctx->next_window_seq;
        ctx->next_window_seq = blocktype;
    }
    
    static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx,
                                           const int16_t *audio, const int16_t *la,
                                           int channel, int prev_type)
    {
        AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
        AacPsyChannel *pch  = &pctx->ch[channel];
        int grouping     = 0;
        int uselongblock = 1;
        int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
        int i;
        FFPsyWindowInfo wi;
    
        memset(&wi, 0, sizeof(wi));
        if (la) {
            float hpfsmpl[AAC_BLOCK_SIZE_LONG];
            float const *pf = hpfsmpl;
            float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
            float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
            float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
            int chans = ctx->avctx->channels;
            const int16_t *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN) * chans;
            int j, att_sum = 0;
    
            /* LAME comment: apply high pass filter of fs/4 */
            for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
                float sum1, sum2;
                sum1 = firbuf[(i + ((PSY_LAME_FIR_LEN - 1) / 2)) * chans];
                sum2 = 0.0;
                for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
                    sum1 += psy_fir_coeffs[j] * (firbuf[(i + j) * chans] + firbuf[(i + PSY_LAME_FIR_LEN - j) * chans]);
                    sum2 += psy_fir_coeffs[j + 1] * (firbuf[(i + j + 1) * chans] + firbuf[(i + PSY_LAME_FIR_LEN - j - 1) * chans]);
                }
                hpfsmpl[i] = sum1 + sum2;
            }
    
            /* Calculate the energies of each sub-shortblock */
            for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
                energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
                assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
                attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
                energy_short[0] += energy_subshort[i];
            }
    
            for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
                float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
                float p = 1.0f;
                for (; pf < pfe; pf++)
                    if (p < fabsf(*pf))
                        p = fabsf(*pf);
                pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
                energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
                /* FIXME: The indexes below are [i + 3 - 2] in the LAME source.
                 *          Obviously the 3 and 2 have some significance, or this would be just [i + 1]
                 *          (which is what we use here). What the 3 stands for is ambigious, as it is both
                 *          number of short blocks, and the number of sub-short blocks.
                 *          It seems that LAME is comparing each sub-block to sub-block + 1 in the
                 *          previous block.
                 */
                if (p > energy_subshort[i + 1])
                    p = p / energy_subshort[i + 1];
                else if (energy_subshort[i + 1] > p * 10.0f)
                    p = energy_subshort[i + 1] / (p * 10.0f);
                else
                    p = 0.0;
                attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
            }
    
            /* compare energy between sub-short blocks */
            for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
                if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
                    if (attack_intensity[i] > pch->attack_threshold)
                        attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
    
            /* should have energy change between short blocks, in order to avoid periodic signals */
            /* Good samples to show the effect are Trumpet test songs */
            /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
            /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
            for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
                float const u = energy_short[i - 1];
                float const v = energy_short[i];
                float const m = FFMAX(u, v);
                if (m < 40000) {                          /* (2) */
                    if (u < 1.7f * v && v < 1.7f * u) {   /* (1) */
                        if (i == 1 && attacks[0] < attacks[i])
                            attacks[0] = 0;
                        attacks[i] = 0;
                    }
                }
                att_sum += attacks[i];
            }
    
            if (attacks[0] <= pch->prev_attack)
                attacks[0] = 0;
    
            att_sum += attacks[0];
            /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
            if (pch->prev_attack == 3 || att_sum) {
                uselongblock = 0;
    
                if (attacks[1] && attacks[0])
                    attacks[1] = 0;
                if (attacks[2] && attacks[1])
                    attacks[2] = 0;
                if (attacks[3] && attacks[2])
                    attacks[3] = 0;
                if (attacks[4] && attacks[3])
                    attacks[4] = 0;
                if (attacks[5] && attacks[4])
                    attacks[5] = 0;
                if (attacks[6] && attacks[5])
                    attacks[6] = 0;
                if (attacks[7] && attacks[6])
                    attacks[7] = 0;
                if (attacks[8] && attacks[7])
                    attacks[8] = 0;
            }
        } else {
            /* We have no lookahead info, so just use same type as the previous sequence. */
            uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
        }
    
        lame_apply_block_type(pch, &wi, uselongblock);
    
        wi.window_type[1] = prev_type;
        if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
            wi.num_windows  = 1;
            wi.grouping[0]  = 1;
            if (wi.window_type[0] == LONG_START_SEQUENCE)
                wi.window_shape = 0;
            else
                wi.window_shape = 1;
        } else {
            int lastgrp = 0;
    
            wi.num_windows = 8;
            wi.window_shape = 0;
            for (i = 0; i < 8; i++) {
                if (!((pch->next_grouping >> i) & 1))
                    lastgrp = i;
                wi.grouping[lastgrp]++;
            }
        }
    
        /* Determine grouping, based on the location of the first attack, and save for
         * the next frame.
         * FIXME: Move this to analysis.
         * TODO: Tune groupings depending on attack location
         * TODO: Handle more than one attack in a group
         */
        for (i = 0; i < 9; i++) {
            if (attacks[i]) {
                grouping = i;
                break;
            }
        }
        pch->next_grouping = window_grouping[grouping];
    
        pch->prev_attack = attacks[8];
    
        return wi;
    }
    
    
    const FFPsyModel ff_aac_psy_model =
    {
        .name    = "3GPP TS 26.403-inspired model",
        .init    = psy_3gpp_init,
    
        .window  = psy_lame_window,
    
        .analyze = psy_3gpp_analyze,
        .end     = psy_3gpp_end,
    };