Skip to content
Snippets Groups Projects
aacpsy.c 10.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC encoder psychoacoustic model
     * Copyright (C) 2008 Konstantin Shishkov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
    
     * @file libavcodec/aacpsy.c
    
     * AAC encoder psychoacoustic model
     */
    
    #include "avcodec.h"
    #include "aactab.h"
    
    
    /***********************************
     *              TODOs:
     * thresholds linearization after their modifications for attaining given bitrate
     * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
     * control quality for quality-based output
     **********************************/
    
    /**
     * constants for 3GPP AAC psychoacoustic model
     * @{
     */
    #define PSY_3GPP_SPREAD_LOW  1.5f // spreading factor for ascending threshold spreading  (15 dB/Bark)
    #define PSY_3GPP_SPREAD_HI   3.0f // spreading factor for descending threshold spreading (30 dB/Bark)
    
    
    #define PSY_3GPP_RPEMIN      0.01f
    #define PSY_3GPP_RPELEV      2.0f
    
    /**
     * @}
     */
    
    /**
     * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
     */
    typedef struct Psy3gppBand{
        float energy;    ///< band energy
        float ffac;      ///< form factor
    
        float thr;       ///< energy threshold
        float min_snr;   ///< minimal SNR
        float thr_quiet; ///< threshold in quiet
    
    /**
     * single/pair channel context for psychoacoustic model
     */
    typedef struct Psy3gppChannel{
        Psy3gppBand band[128];               ///< bands information
        Psy3gppBand prev_band[128];          ///< bands information from the previous frame
    
        float       win_energy;              ///< sliding average of channel energy
        float       iir_state[2];            ///< hi-pass IIR filter state
        uint8_t     next_grouping;           ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
        enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
    }Psy3gppChannel;
    
    
    /**
     * psychoacoustic model frame type-dependent coefficients
     */
    typedef struct Psy3gppCoeffs{
        float ath       [64]; ///< absolute threshold of hearing per bands
        float barks     [64]; ///< Bark value for each spectral band in long frame
        float spread_low[64]; ///< spreading factor for low-to-high threshold spreading in long frame
        float spread_hi [64]; ///< spreading factor for high-to-low threshold spreading in long frame
    }Psy3gppCoeffs;
    
    
    /**
     * 3GPP TS26.403-inspired psychoacoustic model specific data
     */
    typedef struct Psy3gppContext{
        Psy3gppCoeffs psy_coef[2];
        Psy3gppChannel *ch;
    }Psy3gppContext;
    
    
    /**
     * Calculate Bark value for given line.
     */
    
    static av_cold float calc_bark(float f)
    
    {
        return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
    }
    
    
    #define ATH_ADD 4
    /**
     * Calculate ATH value for given frequency.
     * Borrowed from Lame.
     */
    static av_cold float ath(float f, float add)
    {
        f /= 1000.0f;
    
                - 6.8  * exp(-0.6  * (f - 3.4) * (f - 3.4))
                + 6.0  * exp(-0.15 * (f - 8.7) * (f - 8.7))
                + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
    }
    
    
    static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
    
        Psy3gppContext *pctx;
        float barks[1024];
        int i, j, g, start;
        float prev, minscale, minath;
    
        ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext));
        pctx = (Psy3gppContext*) ctx->model_priv_data;
    
    
        for (i = 0; i < 1024; i++)
    
            barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0);
        minath = ath(3410, ATH_ADD);
    
        for (j = 0; j < 2; j++) {
    
            Psy3gppCoeffs *coeffs = &pctx->psy_coef[j];
            i = 0;
            prev = 0.0;
    
            for (g = 0; g < ctx->num_bands[j]; g++) {
    
                i += ctx->bands[j][g];
                coeffs->barks[g] = (barks[i - 1] + prev) / 2.0;
                prev = barks[i - 1];
            }
    
            for (g = 0; g < ctx->num_bands[j] - 1; g++) {
    
                coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
                coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
            }
            start = 0;
    
            for (g = 0; g < ctx->num_bands[j]; g++) {
    
                minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD);
    
                for (i = 1; i < ctx->bands[j][g]; i++)
    
                    minscale = FFMIN(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD));
    
                coeffs->ath[g] = minscale - minath;
                start += ctx->bands[j][g];
            }
        }
    
        pctx->ch = av_mallocz(sizeof(Psy3gppChannel) * ctx->avctx->channels);
        return 0;
    }
    
    /**
     * IIR filter used in block switching decision
     */
    static float iir_filter(int in, float state[2])
    {
        float ret;
    
        ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
        state[0] = in;
        state[1] = ret;
        return ret;
    }
    
    /**
     * window grouping information stored as bits (0 - new group, 1 - group continues)
     */
    static const uint8_t window_grouping[9] = {
        0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
    };
    
    /**
     * Tell encoder which window types to use.
     * @see 3GPP TS26.403 5.4.1 "Blockswitching"
     */
    static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
                                           const int16_t *audio, const int16_t *la,
                                           int channel, int prev_type)
    {
        int i, j;
    
        int br               = ctx->avctx->bit_rate / ctx->avctx->channels;
        int attack_ratio     = br <= 16000 ? 18 : 10;
    
        Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
    
        Psy3gppChannel *pch  = &pctx->ch[channel];
        uint8_t grouping     = 0;
    
        FFPsyWindowInfo wi;
    
        memset(&wi, 0, sizeof(wi));
    
            float s[8], v;
            int switch_to_eight = 0;
            float sum = 0.0, sum2 = 0.0;
            int attack_n = 0;
    
            for (i = 0; i < 8; i++) {
                for (j = 0; j < 128; j++) {
    
                    v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
                    sum += v*v;
                }
    
            for (i = 0; i < 8; i++) {
                if (s[i] > pch->win_energy * attack_ratio) {
    
                    switch_to_eight = 1;
                    break;
                }
            }
            pch->win_energy = pch->win_energy*7/8 + sum2/64;
    
            wi.window_type[1] = prev_type;
    
            switch (prev_type) {
    
            case ONLY_LONG_SEQUENCE:
                wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
                break;
            case LONG_START_SEQUENCE:
                wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
                grouping = pch->next_grouping;
                break;
            case LONG_STOP_SEQUENCE:
                wi.window_type[0] = ONLY_LONG_SEQUENCE;
                break;
            case EIGHT_SHORT_SEQUENCE:
                wi.window_type[0] = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
                grouping = switch_to_eight ? pch->next_grouping : 0;
                break;
            }
            pch->next_grouping = window_grouping[attack_n];
    
        } else {
            for (i = 0; i < 3; i++)
    
                wi.window_type[i] = prev_type;
            grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
        }
    
        wi.window_shape   = 1;
    
        if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
    
            wi.num_windows = 1;
            wi.grouping[0] = 1;
    
            for (i = 0; i < 8; i++) {
                if (!((grouping >> i) & 1))
    
                    lastgrp = i;
                wi.grouping[lastgrp]++;
            }
        }
    
        return wi;
    }
    
    /**
     * Calculate band thresholds as suggested in 3GPP TS26.403
     */
    
    static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
                                 const float *coefs, FFPsyWindowInfo *wi)
    
    {
        Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
    
        Psy3gppChannel *pch  = &pctx->ch[channel];
    
        const int num_bands       = ctx->num_bands[wi->num_windows == 8];
    
        const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
    
        Psy3gppCoeffs *coeffs     = &pctx->psy_coef[wi->num_windows == 8];
    
    
        //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
    
        for (w = 0; w < wi->num_windows*16; w += 16) {
            for (g = 0; g < num_bands; g++) {
    
                Psy3gppBand *band = &pch->band[w+g];
                band->energy = 0.0f;
    
                for (i = 0; i < band_sizes[g]; i++)
    
                    band->energy += coefs[start+i] * coefs[start+i];
                band->energy *= 1.0f / (512*512);
    
                band->thr     = band->energy * 0.001258925f;
                start        += band_sizes[g];
    
    
                ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
            }
        }
        //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
    
        for (w = 0; w < wi->num_windows*16; w += 16) {
    
            for (g = 1; g < num_bands; g++)
    
                band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
    
            for (g = num_bands - 2; g >= 0; g--)
    
                band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
    
            for (g = 0; g < num_bands; g++) {
    
                band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
    
                if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE)
    
                    band[g].thr_quiet = FFMAX(PSY_3GPP_RPEMIN*band[g].thr_quiet,
                                              FFMIN(band[g].thr_quiet,
    
                                              PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
                band[g].thr = FFMAX(band[g].thr, band[g].thr_quiet * 0.25);
    
                ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr;
            }
        }
        memcpy(pch->prev_band, pch->band, sizeof(pch->band));
    }
    
    static av_cold void psy_3gpp_end(FFPsyContext *apc)
    {
        Psy3gppContext *pctx = (Psy3gppContext*) apc->model_priv_data;
        av_freep(&pctx->ch);
        av_freep(&apc->model_priv_data);
    }
    
    
    const FFPsyModel ff_aac_psy_model =
    {
        .name    = "3GPP TS 26.403-inspired model",
        .init    = psy_3gpp_init,
        .window  = psy_3gpp_window,
        .analyze = psy_3gpp_analyze,
        .end     = psy_3gpp_end,
    };