"README.md" did not exist on "2a21adf924c6019b13f632802dadda3914a2c93f"
Newer
Older
/*
* Copyright (C) 2011 Michael Niedermayer (michaelni@gmx.at)
*
* This file is part of libswresample
*
* libswresample is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libswresample is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libswresample; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "swresample_internal.h"
#include "audioconvert.h"
#include "libavutil/avassert.h"
#include "libavutil/audioconvert.h"
#define C30DB M_SQRT2
#define C15DB 1.189207115
#define C__0DB 1.0
#define C_15DB 0.840896415
#define C_30DB M_SQRT1_2
#define C_45DB 0.594603558
#define C_60DB 0.5
#define ALIGN 32
//TODO split options array out?
#define OFFSET(x) offsetof(SwrContext,x)
#define PARAM AV_OPT_FLAG_AUDIO_PARAM
{"ich" , "Input Channel Count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"in_channel_count" , "Input Channel Count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"och" , "Output Channel Count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"out_channel_count" , "Output Channel Count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"uch" , "Used Channel Count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , SWR_CH_MAX, PARAM},
{"used_channel_count" , "Used Channel Count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , SWR_CH_MAX, PARAM},
{"isr" , "Input Sample Rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"in_sample_rate" , "Input Sample Rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"osr" , "Output Sample Rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"out_sample_rate" , "Output Sample Rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"isf" , "Input Sample Format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
{"in_sample_fmt" , "Input Sample Format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
{"osf" , "Output Sample Format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
{"out_sample_fmt" , "Output Sample Format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
Michael Niedermayer
committed
{"tsf" , "Internal Sample Format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_FLTP, PARAM},
{"internal_sample_fmt" , "Internal Sample Format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_FLTP, PARAM},
{"icl" , "Input Channel Layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"in_channel_layout" , "Input Channel Layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"ocl" , "Output Channel Layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"out_channel_layout" , "Output Channel Layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"clev" , "Center Mix Level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"center_mix_level" , "Center Mix Level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"slev" , "Sourround Mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"surround_mix_level" , "Sourround Mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"lfe_mix_level" , "LFE Mix Level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
{"rmvol" , "Rematrix Volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
{"rematrix_volume" , "Rematrix Volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
{"flags" , NULL , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.dbl=0 }, 0 , UINT_MAX , PARAM, "flags"},
{"swr_flags" , NULL , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.dbl=0 }, 0 , UINT_MAX , PARAM, "flags"},
{"res" , "Force Resampling" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
{"dither_scale" , "Dither Scale" , OFFSET(dither_scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
{"dither_method" , "Dither Method" , OFFSET(dither_method ), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
{"rectangular" , "Rectangular Dither" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
{"triangular" , "Triangular Dither" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
{"triangular_hp" , "Triangular Dither With High Pass" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
{"filter_size" , "Resampling Filter Size" , OFFSET(filter_size) , AV_OPT_TYPE_INT , {.dbl=16 }, 0 , INT_MAX , PARAM },
{"phase_shift" , "Resampling Phase Shift" , OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.dbl=10 }, 0 , 30 , PARAM },
{"linear_interp" , "Use Linear Interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.dbl=0 }, 0 , 1 , PARAM },
{"cutoff" , "Cutoff Frequency Ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0.8 }, 0 , 1 , PARAM },
{0}
};
static const char* context_to_name(void* ptr) {
return "SWR";
}
static const AVClass av_class = {
.class_name = "SwrContext",
.item_name = context_to_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
.log_level_offset_offset = OFFSET(log_level_offset),
.parent_log_context_offset = OFFSET(log_ctx),
};
Michael Niedermayer
committed
unsigned swresample_version(void)
{
av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
Michael Niedermayer
committed
}
const char *swresample_configuration(void)
{
return FFMPEG_CONFIGURATION;
}
const char *swresample_license(void)
{
#define LICENSE_PREFIX "libswresample license: "
return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
}
int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
if(!s || s->in_convert) // s needs to be allocated but not initialized
return AVERROR(EINVAL);
s->channel_map = channel_map;
return 0;
}
const AVClass *swr_get_class(void)
{
return &av_class;
}
struct SwrContext *swr_alloc(void){
SwrContext *s= av_mallocz(sizeof(SwrContext));
if(s){
s->av_class= &av_class;
av_opt_set_defaults(s);
struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
int log_offset, void *log_ctx){
if(!s) s= swr_alloc();
if(!s) return NULL;
s->log_level_offset= log_offset;
s->log_ctx= log_ctx;
av_opt_set_int(s, "ocl", out_ch_layout, 0);
av_opt_set_int(s, "osf", out_sample_fmt, 0);
av_opt_set_int(s, "osr", out_sample_rate, 0);
av_opt_set_int(s, "icl", in_ch_layout, 0);
av_opt_set_int(s, "isf", in_sample_fmt, 0);
av_opt_set_int(s, "isr", in_sample_rate, 0);
av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
Clément Bœsch
committed
av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
a->bps = av_get_bytes_per_sample(fmt);
a->planar= av_sample_fmt_is_planar(fmt);
}
static void free_temp(AudioData *a){
av_free(a->data);
memset(a, 0, sizeof(*a));
}
void swr_free(SwrContext **ss){
SwrContext *s= *ss;
if(s){
free_temp(&s->postin);
free_temp(&s->midbuf);
free_temp(&s->preout);
free_temp(&s->in_buffer);
swri_audio_convert_free(&s-> in_convert);
swri_audio_convert_free(&s->out_convert);
swri_audio_convert_free(&s->full_convert);
swri_resample_free(&s->resample);
int swr_init(struct SwrContext *s){
s->in_buffer_index= 0;
s->in_buffer_count= 0;
s->resample_in_constraint= 0;
free_temp(&s->postin);
free_temp(&s->midbuf);
free_temp(&s->preout);
free_temp(&s->in_buffer);
swri_audio_convert_free(&s-> in_convert);
swri_audio_convert_free(&s->out_convert);
swri_audio_convert_free(&s->full_convert);
if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
return AVERROR(EINVAL);
}
if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
return AVERROR(EINVAL);
}
Michael Niedermayer
committed
if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
}else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
}else{
av_log(s, AV_LOG_DEBUG, "Using double precission mode\n");
s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
}
}
Michael Niedermayer
committed
if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
&&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
&&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
&&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
return AVERROR(EINVAL);
}
set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
set_audiodata_fmt(&s->out, s->out_sample_fmt);
if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
s->resample = swri_resample_init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt);
swri_resample_free(&s->resample);
Michael Niedermayer
committed
if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
&& s->int_sample_fmt != AV_SAMPLE_FMT_S32P
&& s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
&& s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
&& s->resample){
av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
if(!s->used_ch_count)
s->used_ch_count= s->in.ch_count;
if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
Michael Niedermayer
committed
s-> in_ch_layout= 0;
}
s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
s->rematrix_custom;
#define RSC 1 //FIXME finetune
if(!s-> in.ch_count)
s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
if(!s->used_ch_count)
s->used_ch_count= s->in.ch_count;
if(!s->out.ch_count)
s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
if(!s-> in.ch_count){
av_assert0(!s->in_ch_layout);
av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
return -1;
}
Michael Niedermayer
committed
if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
av_log(s, AV_LOG_ERROR, "Rematrix is needed but there is not enough information to do it\n");
return -1;
}
av_assert0(s->out.ch_count);
s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
if(!s->resample && !s->rematrix && !s->channel_map && !s->dither_method){
s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
Michael Niedermayer
committed
return 0;
}
s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
s->int_sample_fmt, s->out.ch_count, NULL, 0);
s->postin= s->in;
s->preout= s->out;
s->midbuf= s->in;
if(s->channel_map){
s->postin.ch_count=
s->midbuf.ch_count= s->used_ch_count;
if(s->resample)
s->in_buffer.ch_count= s->used_ch_count;
if(!s->resample_first){
s->midbuf.ch_count= s->out.ch_count;
if(s->resample)
s->in_buffer.ch_count = s->out.ch_count;
set_audiodata_fmt(&s->postin, s->int_sample_fmt);
set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
set_audiodata_fmt(&s->preout, s->int_sample_fmt);
set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
if(s->rematrix || s->dither_method)
return 0;
}
static int realloc_audio(AudioData *a, int count){
int i, countb;
AudioData old;
if(a->count >= count)
return 0;
count*=2;
countb= FFALIGN(count*a->bps, ALIGN);
old= *a;
av_assert0(a->bps);
av_assert0(a->ch_count);
a->data= av_malloc(countb*a->ch_count);
if(!a->data)
return AVERROR(ENOMEM);
for(i=0; i<a->ch_count; i++){
a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
}
if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
av_free(old.data);
a->count= count;
return 1;
}
static void copy(AudioData *out, AudioData *in,
int count){
av_assert0(out->planar == in->planar);
av_assert0(out->bps == in->bps);
av_assert0(out->ch_count == in->ch_count);
if(out->planar){
int ch;
for(ch=0; ch<out->ch_count; ch++)
memcpy(out->ch[ch], in->ch[ch], count*out->bps);
}else
memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
}
static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
int i;
if(!in_arg){
memset(out->ch, 0, sizeof(out->ch));
}else if(out->planar){
for(i=0; i<out->ch_count; i++)
out->ch[i]= in_arg[i];
}else{
for(i=0; i<out->ch_count; i++)
out->ch[i]= in_arg[0] + i*out->bps;
}
}
static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
int i;
if(out->planar){
for(i=0; i<out->ch_count; i++)
in_arg[i]= out->ch[i];
}else{
in_arg[0]= out->ch[0];
}
}
/**
*
* out may be equal in.
*/
static void buf_set(AudioData *out, AudioData *in, int count){
if(in->planar){
for(ch=0; ch<out->ch_count; ch++)
out->ch[ch]= in->ch[ch] + count*out->bps;
for(ch=out->ch_count-1; ch>=0; ch--)
out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
}
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
}
/**
*
* @return number of samples output per channel
*/
static int resample(SwrContext *s, AudioData *out_param, int out_count,
const AudioData * in_param, int in_count){
AudioData in, out, tmp;
int ret_sum=0;
int border=0;
tmp=out=*out_param;
in = *in_param;
do{
int ret, size, consumed;
if(!s->resample_in_constraint && s->in_buffer_count){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
ret= swri_multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
out_count -= ret;
ret_sum += ret;
buf_set(&out, &out, ret);
s->in_buffer_count -= consumed;
s->in_buffer_index += consumed;
if(!in_count)
break;
if(s->in_buffer_count <= border){
buf_set(&in, &in, -s->in_buffer_count);
in_count += s->in_buffer_count;
s->in_buffer_count=0;
s->in_buffer_index=0;
border = 0;
}
}
if(in_count && !s->in_buffer_count){
s->in_buffer_index=0;
ret= swri_multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
out_count -= ret;
ret_sum += ret;
buf_set(&out, &out, ret);
in_count -= consumed;
buf_set(&in, &in, consumed);
}
//TODO is this check sane considering the advanced copy avoidance below
size= s->in_buffer_index + s->in_buffer_count + in_count;
if( size > s->in_buffer.count
&& s->in_buffer_count + in_count <= s->in_buffer_index){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&s->in_buffer, &tmp, s->in_buffer_count);
s->in_buffer_index=0;
}else
if((ret=realloc_audio(&s->in_buffer, size)) < 0)
return ret;
if(in_count){
int count= in_count;
if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
copy(&tmp, &in, /*in_*/count);
s->in_buffer_count += count;
in_count -= count;
border += count;
buf_set(&in, &in, count);
s->resample_in_constraint= 0;
if(s->in_buffer_count != count || in_count)
continue;
}
break;
}while(1);
s->resample_in_constraint= !!out_count;
return ret_sum;
}
static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
AudioData *in , int in_count){
Michael Niedermayer
committed
if(s->full_convert){
av_assert0(!s->resample);
swri_audio_convert(s->full_convert, out, in, in_count);
Michael Niedermayer
committed
return out_count;
}
// in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
// in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
if((ret=realloc_audio(&s->postin, in_count))<0)
return ret;
if(s->resample_first){
av_assert0(s->midbuf.ch_count == s->used_ch_count);
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
if((ret=realloc_audio(&s->midbuf, out_count))<0)
return ret;
}else{
av_assert0(s->midbuf.ch_count == s->out.ch_count);
if((ret=realloc_audio(&s->midbuf, in_count))<0)
return ret;
}
if((ret=realloc_audio(&s->preout, out_count))<0)
return ret;
postin= &s->postin;
midbuf_tmp= s->midbuf;
midbuf= &midbuf_tmp;
preout_tmp= s->preout;
preout= &preout_tmp;
if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar)
postin= in;
if(s->resample_first ? !s->resample : !s->rematrix)
midbuf= postin;
if(s->resample_first ? !s->rematrix : !s->resample)
preout= midbuf;
if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
if(preout==in){
out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
copy(out, in, out_count);
return out_count;
}
else if(preout==postin) preout= midbuf= postin= out;
else if(preout==midbuf) preout= midbuf= out;
else preout= out;
}
if(in != postin){
swri_audio_convert(s->in_convert, postin, in, in_count);
}
if(s->resample_first){
if(postin != midbuf)
out_count= resample(s, midbuf, out_count, postin, in_count);
if(midbuf != preout)
swri_rematrix(s, preout, midbuf, out_count, preout==out);
swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
if(midbuf != preout)
out_count= resample(s, preout, out_count, midbuf, in_count);
}
if(preout != out && out_count){
int dither_count= FFMAX(out_count, 1<<16);
if((ret=realloc_audio(&s->dither, dither_count))<0)
return ret;
if(ret)
for(ch=0; ch<s->dither.ch_count; ch++)
swri_get_dither(s, s->dither.ch[ch], s->dither.count, 12345678913579<<ch, s->out_sample_fmt, s->int_sample_fmt);
av_assert0(s->dither.ch_count == preout->ch_count);
if(s->dither_pos + out_count > s->dither.count)
s->dither_pos = 0;
for(ch=0; ch<preout->ch_count; ch++)
s->mix_2_1_f(preout->ch[ch], preout->ch[ch], s->dither.ch[ch] + s->dither.bps * s->dither_pos, s->native_one, 0, 0, out_count);
s->dither_pos += out_count;
//FIXME packed doesnt need more than 1 chan here!
swri_audio_convert(s->out_convert, out, preout, out_count);
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
const uint8_t *in_arg [SWR_CH_MAX], int in_count){
AudioData * in= &s->in;
AudioData *out= &s->out;
if(!in_arg){
if(s->in_buffer_count){
if (s->resample && !s->flushed) {
AudioData *a= &s->in_buffer;
int i, j, ret;
if((ret=realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
return ret;
av_assert0(a->planar);
for(i=0; i<a->ch_count; i++){
for(j=0; j<s->in_buffer_count; j++){
memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
}
}
s->in_buffer_count += (s->in_buffer_count+1)/2;
s->resample_in_constraint = 0;
s->flushed = 1;
}
}else{
return 0;
}
}else
fill_audiodata(in , (void*)in_arg);
fill_audiodata(out, out_arg);
if(s->resample){
return swr_convert_internal(s, out, out_count, in, in_count);
}else{
AudioData tmp= *in;
int ret2=0;
int ret, size;
size = FFMIN(out_count, s->in_buffer_count);
if(size){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
ret= swr_convert_internal(s, out, size, &tmp, size);
if(ret<0)
return ret;
ret2= ret;
s->in_buffer_count -= ret;
s->in_buffer_index += ret;
buf_set(out, out, ret);
out_count -= ret;
if(!s->in_buffer_count)
s->in_buffer_index = 0;
}
if(in_count){
size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
if(in_count > out_count) { //FIXME move after swr_convert_internal
if( size > s->in_buffer.count
&& s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&s->in_buffer, &tmp, s->in_buffer_count);
s->in_buffer_index=0;
}else
if((ret=realloc_audio(&s->in_buffer, size)) < 0)
return ret;
}
if(out_count){
size = FFMIN(in_count, out_count);
ret= swr_convert_internal(s, out, size, in, size);
if(ret<0)
return ret;
buf_set(in, in, ret);
in_count -= ret;
ret2 += ret;
}
if(in_count){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&tmp, in, in_count);
s->in_buffer_count += in_count;
}
}
return ret2;
}
}