Skip to content
Snippets Groups Projects
dpcm.c 11.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Assorted DPCM codecs
     * Copyright (c) 2003 The ffmpeg Project.
     *
    
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
    
     * version 2.1 of the License, or (at your option) any later version.
    
     * FFmpeg is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
    
     */
    
    /**
     * @file: dpcm.c
     * Assorted DPCM (differential pulse code modulation) audio codecs
     * by Mike Melanson (melanson@pcisys.net)
    
     * Xan DPCM decoder by Mario Brito (mbrito@student.dei.uc.pt)
    
     * for more information on the specific data formats, visit:
     *   http://www.pcisys.net/~melanson/codecs/simpleaudio.html
    
     * SOL DPCMs implemented by Konstantin Shishkov
    
     *
     * Note about using the Xan DPCM decoder: Xan DPCM is used in AVI files
     * found in the Wing Commander IV computer game. These AVI files contain
     * WAVEFORMAT headers which report the audio format as 0x01: raw PCM.
     * Clearly incorrect. To detect Xan DPCM, you will probably have to
     * special-case your AVI demuxer to use Xan DPCM if the file uses 'Xxan'
     * (Xan video) for its video codec. Alternately, such AVI files also contain
     * the fourcc 'Axan' in the 'auds' chunk of the AVI header.
    
     */
    
    #include "avcodec.h"
    
    typedef struct DPCMContext {
        int channels;
        short roq_square_array[256];
    
        long sample[2];//for SOL_DPCM
    
        const int *sol_table;//for SOL_DPCM
    
    } DPCMContext;
    
    #define SE_16BIT(x)  if (x & 0x8000) x -= 0x10000;
    
    
    static const int interplay_delta_table[] = {
    
             0,      1,      2,      3,      4,      5,      6,      7,
             8,      9,     10,     11,     12,     13,     14,     15,
            16,     17,     18,     19,     20,     21,     22,     23,
            24,     25,     26,     27,     28,     29,     30,     31,
            32,     33,     34,     35,     36,     37,     38,     39,
            40,     41,     42,     43,     47,     51,     56,     61,
            66,     72,     79,     86,     94,    102,    112,    122,
           133,    145,    158,    173,    189,    206,    225,    245,
           267,    292,    318,    348,    379,    414,    452,    493,
           538,    587,    640,    699,    763,    832,    908,    991,
          1081,   1180,   1288,   1405,   1534,   1673,   1826,   1993,
          2175,   2373,   2590,   2826,   3084,   3365,   3672,   4008,
          4373,   4772,   5208,   5683,   6202,   6767,   7385,   8059,
          8794,   9597,  10472,  11428,  12471,  13609,  14851,  16206,
         17685,  19298,  21060,  22981,  25078,  27367,  29864,  32589,
        -29973, -26728, -23186, -19322, -15105, -10503,  -5481,     -1,
             1,      1,   5481,  10503,  15105,  19322,  23186,  26728,
         29973, -32589, -29864, -27367, -25078, -22981, -21060, -19298,
        -17685, -16206, -14851, -13609, -12471, -11428, -10472,  -9597,
         -8794,  -8059,  -7385,  -6767,  -6202,  -5683,  -5208,  -4772,
         -4373,  -4008,  -3672,  -3365,  -3084,  -2826,  -2590,  -2373,
         -2175,  -1993,  -1826,  -1673,  -1534,  -1405,  -1288,  -1180,
         -1081,   -991,   -908,   -832,   -763,   -699,   -640,   -587,
          -538,   -493,   -452,   -414,   -379,   -348,   -318,   -292,
          -267,   -245,   -225,   -206,   -189,   -173,   -158,   -145,
          -133,   -122,   -112,   -102,    -94,    -86,    -79,    -72,
           -66,    -61,    -56,    -51,    -47,    -43,    -42,    -41,
           -40,    -39,    -38,    -37,    -36,    -35,    -34,    -33,
           -32,    -31,    -30,    -29,    -28,    -27,    -26,    -25,
           -24,    -23,    -22,    -21,    -20,    -19,    -18,    -17,
           -16,    -15,    -14,    -13,    -12,    -11,    -10,     -9,
            -8,     -7,     -6,     -5,     -4,     -3,     -2,     -1
    
    };
    
    
    static const int sol_table_old[16] =
    
        { 0x0,  0x1,  0x2 , 0x3,  0x6,  0xA,  0xF, 0x15,
        -0x15, -0xF, -0xA, -0x6, -0x3, -0x2, -0x1, 0x0};
    
    
    static const int sol_table_new[16] =
    
        { 0x0,  0x1,  0x2,  0x3,  0x6,  0xA,  0xF,  0x15,
          0x0, -0x1, -0x2, -0x3, -0x6, -0xA, -0xF, -0x15};
    
    static const int sol_table_16[128] = {
    
        0x000, 0x008, 0x010, 0x020, 0x030, 0x040, 0x050, 0x060, 0x070, 0x080,
        0x090, 0x0A0, 0x0B0, 0x0C0, 0x0D0, 0x0E0, 0x0F0, 0x100, 0x110, 0x120,
        0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1A0, 0x1B0, 0x1C0,
        0x1D0, 0x1E0, 0x1F0, 0x200, 0x208, 0x210, 0x218, 0x220, 0x228, 0x230,
        0x238, 0x240, 0x248, 0x250, 0x258, 0x260, 0x268, 0x270, 0x278, 0x280,
        0x288, 0x290, 0x298, 0x2A0, 0x2A8, 0x2B0, 0x2B8, 0x2C0, 0x2C8, 0x2D0,
        0x2D8, 0x2E0, 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308, 0x310, 0x318, 0x320,
        0x328, 0x330, 0x338, 0x340, 0x348, 0x350, 0x358, 0x360, 0x368, 0x370,
        0x378, 0x380, 0x388, 0x390, 0x398, 0x3A0, 0x3A8, 0x3B0, 0x3B8, 0x3C0,
        0x3C8, 0x3D0, 0x3D8, 0x3E0, 0x3E8, 0x3F0, 0x3F8, 0x400, 0x440, 0x480,
        0x4C0, 0x500, 0x540, 0x580, 0x5C0, 0x600, 0x640, 0x680, 0x6C0, 0x700,
        0x740, 0x780, 0x7C0, 0x800, 0x900, 0xA00, 0xB00, 0xC00, 0xD00, 0xE00,
        0xF00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x3000, 0x4000
    };
    
    
    
    
    static av_cold int dpcm_decode_init(AVCodecContext *avctx)
    
    {
        DPCMContext *s = avctx->priv_data;
        int i;
        short square;
    
        s->channels = avctx->channels;
    
        s->sample[0] = s->sample[1] = 0;
    
    
        switch(avctx->codec->id) {
    
        case CODEC_ID_ROQ_DPCM:
            /* initialize square table */
            for (i = 0; i < 128; i++) {
                square = i * i;
                s->roq_square_array[i] = square;
                s->roq_square_array[i + 128] = -square;
            }
            break;
    
    
        case CODEC_ID_SOL_DPCM:
            switch(avctx->codec_tag){
            case 1:
                s->sol_table=sol_table_old;
                s->sample[0] = s->sample[1] = 0x80;
                break;
            case 2:
                s->sol_table=sol_table_new;
                s->sample[0] = s->sample[1] = 0x80;
                break;
            case 3:
                s->sol_table=sol_table_16;
                break;
            default:
                av_log(avctx, AV_LOG_ERROR, "Unknown SOL subcodec\n");
                return -1;
            }
            break;
    
        return 0;
    }
    
    static int dpcm_decode_frame(AVCodecContext *avctx,
                                 void *data, int *data_size,
    
    Michael Niedermayer's avatar
    Michael Niedermayer committed
                                 const uint8_t *buf, int buf_size)
    
    {
        DPCMContext *s = avctx->priv_data;
        int in, out = 0;
        int predictor[2];
        int channel_number = 0;
        short *output_samples = data;
    
        int shift[2];
        unsigned char byte;
        short diff;
    
    Mike Melanson's avatar
    Mike Melanson committed
        if (!buf_size)
            return 0;
    
    
        // almost every DPCM variant expands one byte of data into two
        if(*data_size/2 < buf_size)
            return -1;
    
    
        switch(avctx->codec->id) {
    
        case CODEC_ID_ROQ_DPCM:
            if (s->channels == 1)
    
                predictor[0] = AV_RL16(&buf[6]);
    
            else {
                predictor[0] = buf[7] << 8;
                predictor[1] = buf[6] << 8;
            }
            SE_16BIT(predictor[0]);
            SE_16BIT(predictor[1]);
    
            /* decode the samples */
            for (in = 8, out = 0; in < buf_size; in++, out++) {
                predictor[channel_number] += s->roq_square_array[buf[in]];
    
                predictor[channel_number] = av_clip_int16(predictor[channel_number]);
    
                output_samples[out] = predictor[channel_number];
    
                /* toggle channel */
                channel_number ^= s->channels - 1;
            }
            break;
    
        case CODEC_ID_INTERPLAY_DPCM:
    
            in = 6;  /* skip over the stream mask and stream length */
    
            predictor[0] = AV_RL16(&buf[in]);
    
            in += 2;
            SE_16BIT(predictor[0])
            output_samples[out++] = predictor[0];
            if (s->channels == 2) {
    
                predictor[1] = AV_RL16(&buf[in]);
    
                SE_16BIT(predictor[1])
                output_samples[out++] = predictor[1];
    
            }
    
            while (in < buf_size) {
                predictor[channel_number] += interplay_delta_table[buf[in++]];
    
                predictor[channel_number] = av_clip_int16(predictor[channel_number]);
    
                output_samples[out++] = predictor[channel_number];
    
                /* toggle channel */
                channel_number ^= s->channels - 1;
            }
    
            break;
    
    
        case CODEC_ID_XAN_DPCM:
            in = 0;
            shift[0] = shift[1] = 4;
    
            predictor[0] = AV_RL16(&buf[in]);
    
            in += 2;
            SE_16BIT(predictor[0]);
            if (s->channels == 2) {
    
                predictor[1] = AV_RL16(&buf[in]);
    
                in += 2;
                SE_16BIT(predictor[1]);
            }
    
            while (in < buf_size) {
                byte = buf[in++];
                diff = (byte & 0xFC) << 8;
                if ((byte & 0x03) == 3)
                    shift[channel_number]++;
                else
                    shift[channel_number] -= (2 * (byte & 3));
                /* saturate the shifter to a lower limit of 0 */
                if (shift[channel_number] < 0)
                    shift[channel_number] = 0;
    
                diff >>= shift[channel_number];
                predictor[channel_number] += diff;
    
    
                predictor[channel_number] = av_clip_int16(predictor[channel_number]);
    
                output_samples[out++] = predictor[channel_number];
    
                /* toggle channel */
                channel_number ^= s->channels - 1;
            }
            break;
    
        case CODEC_ID_SOL_DPCM:
            in = 0;
            if (avctx->codec_tag != 3) {
    
                if(*data_size/4 < buf_size)
                    return -1;
    
                while (in < buf_size) {
                    int n1, n2;
                    n1 = (buf[in] >> 4) & 0xF;
                    n2 = buf[in++] & 0xF;
                    s->sample[0] += s->sol_table[n1];
                     if (s->sample[0] < 0) s->sample[0] = 0;
                    if (s->sample[0] > 255) s->sample[0] = 255;
                    output_samples[out++] = (s->sample[0] - 128) << 8;
                    s->sample[s->channels - 1] += s->sol_table[n2];
                    if (s->sample[s->channels - 1] < 0) s->sample[s->channels - 1] = 0;
                    if (s->sample[s->channels - 1] > 255) s->sample[s->channels - 1] = 255;
                    output_samples[out++] = (s->sample[s->channels - 1] - 128) << 8;
                }
            } else {
                while (in < buf_size) {
                    int n;
                    n = buf[in++];
                    if (n & 0x80) s->sample[channel_number] -= s->sol_table[n & 0x7F];
                    else s->sample[channel_number] += s->sol_table[n & 0x7F];
    
                    s->sample[channel_number] = av_clip_int16(s->sample[channel_number]);
    
                    output_samples[out++] = s->sample[channel_number];
                    /* toggle channel */
                    channel_number ^= s->channels - 1;
                }
            }
            break;
    
        }
    
        *data_size = out * sizeof(short);
        return buf_size;
    }
    
    
    #define DPCM_DECODER(id, name, long_name_)      \
    
    AVCodec name ## _decoder = {                    \
        #name,                                      \
        CODEC_TYPE_AUDIO,                           \
        id,                                         \
        sizeof(DPCMContext),                        \
        dpcm_decode_init,                           \
        NULL,                                       \
        NULL,                                       \
        dpcm_decode_frame,                          \
    
        .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
    
    DPCM_DECODER(CODEC_ID_INTERPLAY_DPCM, interplay_dpcm, "Interplay DPCM");
    DPCM_DECODER(CODEC_ID_ROQ_DPCM, roq_dpcm, "id RoQ DPCM");
    DPCM_DECODER(CODEC_ID_SOL_DPCM, sol_dpcm, "Sol DPCM");
    DPCM_DECODER(CODEC_ID_XAN_DPCM, xan_dpcm, "Xan DPCM");