Newer
Older
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/intrax8dsp.c
*@brief IntraX8 frame subdecoder image manipulation routines
*/
#include "dsputil.h"
/*
area positions, #3 is 1 pixel only, other are 8 pixels
|66666666|
3|44444444|55555555|
- -+--------+--------+
1 2|XXXXXXXX|
1 2|XXXXXXXX|
1 2|XXXXXXXX|
1 2|XXXXXXXX|
1 2|XXXXXXXX|
1 2|XXXXXXXX|
1 2|XXXXXXXX|
1 2|XXXXXXXX|
^-start
*/
#define area1 (0)
#define area2 (8)
#define area3 (8+8)
#define area4 (8+8+1)
#define area5 (8+8+1+8)
#define area6 (8+8+1+16)
/**
Collect statistics and prepare the edge pixels required by the other spatial compensation functions.
* @param src pointer to the beginning of the processed block
* @param dst pointer to emu_edge, edge pixels are stored the way other compensation routines do.
* @param linesize byte offset between 2 vertical pixels in the source image
* @param range pointer to the variable where the edge pixel range is to be stored (max-min values)
* @param psum pointer to the variable where the edge pixel sum is to be stored
* @param edges Informs this routine that the block is on an image border, so it has to interpolate the missing edge pixels.
and some of the edge pixels should be interpolated, the flag has the following meaning:
1 - mb_x==0 - first block in the row, interpolate area #1,#2,#3;
2 - mb_y==0 - first row, interpolate area #3,#4,#5,#6;
note: 1|2 - mb_x==mb_y==0 - first block, use 0x80 value for all areas;
4 - mb_x>= (mb_width-1) last block in the row, interpolate area #5;
static void x8_setup_spatial_compensation(uint8_t *src, uint8_t *dst, int linesize,
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
int * range, int * psum, int edges){
uint8_t * ptr;
int sum;
int i;
int min_pix,max_pix;
uint8_t c;
if((edges&3)==3){
*psum=0x80*(8+1+8+2);
*range=0;
memset(dst,0x80,16+1+16+8);
//this triggers flat_dc for sure.
//flat_dc avoids all (other) prediction modes, but requires dc_level decoding.
return;
}
min_pix=256;
max_pix=-1;
sum=0;
if(!(edges&1)){//(mb_x!=0)//there is previous block on this row
ptr=src-1;//left column, area 2
for(i=7;i>=0;i--){
c=*(ptr-1);//area1, same mb as area2, no need to check
dst[area1+i]=c;
c=*(ptr);
sum+=c;
min_pix=FFMIN(min_pix,c);
max_pix=FFMAX(max_pix,c);
dst[area2+i]=c;
ptr+=linesize;
}
}
if(!(edges&2)){ //(mb_y!=0)//there is row above
ptr=src-linesize;//top line
for(i=0;i<8;i++){
c=*(ptr+i);
sum+=c;
min_pix=FFMIN(min_pix, c);
max_pix=FFMAX(max_pix, c);
}
if(edges&4){//last block on the row?
memset(dst+area5,c,8);//set with last pixel fr
memcpy(dst+area4, ptr, 8);
}else{
memcpy(dst+area4, ptr, 16);//both area4 and 5
}
memcpy(dst+area6, ptr-linesize, 8);//area6 always present in the above block
}
//now calculate the stuff we need
if(edges&3){//mb_x==0 || mb_y==0){
if(edges&1){ //(mb_x==0) {//implies mb_y!=0
memset(dst+area1,avg,8+8+1);//areas 1,2 and 3 are averaged
}else{//implies y==0 x!=0
memset(dst+area3,avg, 1+16+8);//areas 3, 4,5,6
}
uint8_t c=*(src-1-linesize);//the edge pixel, in the top line and left column
dst[area3]=c;
sum+=c;
//edge pixel is not part of min/max
}
(*range) = max_pix - min_pix;
sum += *(dst+area5) + *(dst+area5+1);
*psum = sum;
}
static const uint16_t zero_prediction_weights[64*2] = {
640, 640, 669, 480, 708, 354, 748, 257, 792, 198, 760, 143, 808, 101, 772, 72,
480, 669, 537, 537, 598, 416, 661, 316, 719, 250, 707, 185, 768, 134, 745, 97,
354, 708, 416, 598, 488, 488, 564, 388, 634, 317, 642, 241, 716, 179, 706, 132,
257, 748, 316, 661, 388, 564, 469, 469, 543, 395, 571, 311, 655, 238, 660, 180,
198, 792, 250, 719, 317, 634, 395, 543, 469, 469, 507, 380, 597, 299, 616, 231,
161, 855, 206, 788, 266, 710, 340, 623, 411, 548, 455, 455, 548, 366, 576, 288,
122, 972, 159, 914, 211, 842, 276, 758, 341, 682, 389, 584, 483, 483, 520, 390,
110, 1172, 144, 1107, 193, 1028, 254, 932, 317, 846, 366, 731, 458, 611, 499, 499
};
static void spatial_compensation_0(uint8_t *src , uint8_t *dst, int linesize){
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
int i,j;
int x,y;
unsigned int p;//power divided by 2
int a;
uint16_t left_sum[2][8];
uint16_t top_sum[2][8];
memset(left_sum,0,2*8*sizeof(uint16_t));
memset( top_sum,0,2*8*sizeof(uint16_t));
for(i=0;i<8;i++){
a=src[area2+7-i]<<4;
for(j=0;j<8;j++){
p=abs(i-j);
left_sum[p&1][j]+= a>>(p>>1);
}
}
for(i=0;i<8;i++){
a=src[area4+i]<<4;
for(j=0;j<8;j++){
p=abs(i-j);
top_sum[p&1][j]+= a>>(p>>1);
}
}
for(;i<10;i++){
a=src[area4+i]<<4;
for(j=5;j<8;j++){
p=abs(i-j);
top_sum[p&1][j]+= a>>(p>>1);
}
}
for(;i<12;i++){
a=src[area4+i]<<4;
for(j=7;j<8;j++){
p=abs(i-j);
top_sum[p&1][j]+= a>>(p>>1);
}
}
for(i=0;i<8;i++){
top_sum [0][i]+=(top_sum [1][i]*181 + 128 )>>8;//181 is sqrt(2)/2
left_sum[0][i]+=(left_sum[1][i]*181 + 128 )>>8;
}
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x] = (
(uint32_t)top_sum [0][x]*zero_prediction_weights[y*16+x*2+0] +
(uint32_t)left_sum[0][y]*zero_prediction_weights[y*16+x*2+1] +
0x8000
)>>16;
}
dst+=linesize;
}
}
static void spatial_compensation_1(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=src[area4 + FFMIN(2*y+x+2, 15) ];
}
dst+=linesize;
}
}
static void spatial_compensation_2(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=src[area4 +1+y+x];
}
dst+=linesize;
}
}
static void spatial_compensation_3(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=src[area4 +((y+1)>>1)+x];
}
dst+=linesize;
}
}
static void spatial_compensation_4(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=( src[area4+x] + src[area6+x] + 1 )>>1;
}
dst+=linesize;
}
}
static void spatial_compensation_5(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
if(2*x-y<0){
dst[x]=src[area2+9+2*x-y];
}else{
dst[x]=src[area4 +x-((y+1)>>1)];
}
}
dst+=linesize;
}
}
static void spatial_compensation_6(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=src[area3+x-y];
}
dst+=linesize;
}
}
static void spatial_compensation_7(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
if(x-2*y>0){
dst[x]=( src[area3-1+x-2*y] + src[area3+x-2*y] + 1)>>1;
}else{
dst[x]=src[area2+8-y +(x>>1)];
}
}
dst+=linesize;
}
}
static void spatial_compensation_8(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=( src[area1+7-y] + src[area2+7-y] + 1 )>>1;
}
dst+=linesize;
}
}
static void spatial_compensation_9(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=src[area2+6-FFMIN(x+y,6)];
}
dst+=linesize;
}
}
static void spatial_compensation_10(uint8_t *src , uint8_t *dst, int linesize){
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=(src[area2+7-y]*(8-x)+src[area4+x]*x+4)>>3;
}
dst+=linesize;
}
}
static void spatial_compensation_11(uint8_t *src , uint8_t *dst, int linesize){
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
int x,y;
for(y=0;y<8;y++){
for(x=0;x<8;x++){
dst[x]=(src[area2+7-y]*y+src[area4+x]*(8-y)+4)>>3;
}
dst+=linesize;
}
}
static void x8_loop_filter(uint8_t * ptr, const int a_stride, const int b_stride, int quant){
int i,t;
int p0,p1,p2,p3,p4,p5,p6,p7,p8,p9;
int ql=(quant+10)>>3;
for(i=0; i<8; i++,ptr+=b_stride){
p0=ptr[-5*a_stride];
p1=ptr[-4*a_stride];
p2=ptr[-3*a_stride];
p3=ptr[-2*a_stride];
p4=ptr[-1*a_stride];
p5=ptr[ 0 ];
p6=ptr[ 1*a_stride];
p7=ptr[ 2*a_stride];
p8=ptr[ 3*a_stride];
p9=ptr[ 4*a_stride];
t=
(FFABS(p1-p2) <= ql) +
(FFABS(p2-p3) <= ql) +
(FFABS(p3-p4) <= ql) +
(FFABS(p4-p5) <= ql);
if(t>0){//You need at least 1 to be able to reach a total score of 6.
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
t+=
(FFABS(p5-p6) <= ql) +
(FFABS(p6-p7) <= ql) +
(FFABS(p7-p8) <= ql) +
(FFABS(p8-p9) <= ql) +
(FFABS(p0-p1) <= ql);
if(t>=6){
int min,max;
min=max=p1;
min=FFMIN(min,p3); max=FFMAX(max,p3);
min=FFMIN(min,p5); max=FFMAX(max,p5);
min=FFMIN(min,p8); max=FFMAX(max,p8);
if(max-min<2*quant){//early stop
min=FFMIN(min,p2); max=FFMAX(max,p2);
min=FFMIN(min,p4); max=FFMAX(max,p4);
min=FFMIN(min,p6); max=FFMAX(max,p6);
min=FFMIN(min,p7); max=FFMAX(max,p7);
if(max-min<2*quant){
ptr[-2*a_stride]=(4*p2 + 3*p3 + 1*p7 + 4)>>3;
ptr[-1*a_stride]=(3*p2 + 3*p4 + 2*p7 + 4)>>3;
ptr[ 0 ]=(2*p2 + 3*p5 + 3*p7 + 4)>>3;
ptr[ 1*a_stride]=(1*p2 + 3*p6 + 4*p7 + 4)>>3;
continue;
};
}
}
}
{
int x,x0,x1,x2;
int m;
x0 = (2*p3 - 5*p4 + 5*p5 - 2*p6 + 4)>>3;
if(FFABS(x0) < quant){
x1=(2*p1 - 5*p2 + 5*p3 - 2*p4 + 4)>>3;
x2=(2*p5 - 5*p6 + 5*p7 - 2*p8 + 4)>>3;
x=FFABS(x0) - FFMIN( FFABS(x1), FFABS(x2) );
m=p4-p5;
if( x > 0 && (m^x0) <0){
int32_t sign;
sign=m>>31;
m=(m^sign)-sign;//abs(m)
m>>=1;
x=(5*x)>>3;
if(x>m) x=m;
x=(x^sign)-sign;
ptr[-1*a_stride] -= x;
ptr[ 0] += x;
}
}
}
}
}
static void x8_h_loop_filter(uint8_t *src, int stride, int qscale){
x8_loop_filter(src, stride, 1, qscale);
}
static void x8_v_loop_filter(uint8_t *src, int stride, int qscale){
x8_loop_filter(src, 1, stride, qscale);
}
void ff_intrax8dsp_init(DSPContext* dsp, AVCodecContext *avctx) {
dsp->x8_h_loop_filter=x8_h_loop_filter;
dsp->x8_v_loop_filter=x8_v_loop_filter;
dsp->x8_setup_spatial_compensation=x8_setup_spatial_compensation;
dsp->x8_spatial_compensation[0]=spatial_compensation_0;
dsp->x8_spatial_compensation[1]=spatial_compensation_1;
dsp->x8_spatial_compensation[2]=spatial_compensation_2;
dsp->x8_spatial_compensation[3]=spatial_compensation_3;
dsp->x8_spatial_compensation[4]=spatial_compensation_4;
dsp->x8_spatial_compensation[5]=spatial_compensation_5;
dsp->x8_spatial_compensation[6]=spatial_compensation_6;
dsp->x8_spatial_compensation[7]=spatial_compensation_7;
dsp->x8_spatial_compensation[8]=spatial_compensation_8;
dsp->x8_spatial_compensation[9]=spatial_compensation_9;
dsp->x8_spatial_compensation[10]=spatial_compensation_10;
dsp->x8_spatial_compensation[11]=spatial_compensation_11;