Skip to content
Snippets Groups Projects
aacps.c 38 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * MPEG-4 Parametric Stereo decoding functions
     * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
    
     *
     * Note: Rounding-to-nearest used unless otherwise stated
     *
    
     */
    
    #include <stdint.h>
    
    #include "libavutil/common.h"
    
    #include "libavutil/mathematics.h"
    #include "avcodec.h"
    #include "get_bits.h"
    
    #if USE_FIXED
    #include "aacps_fixed_tablegen.h"
    #else
    #include "libavutil/internal.h"
    
    #include "aacps_tablegen.h"
    
    #include "aacpsdata.c"
    
    #define PS_BASELINE 0  ///< Operate in Baseline PS mode
                           ///< Baseline implies 10 or 20 stereo bands,
                           ///< mixing mode A, and no ipd/opd
    
    
    #define numQMFSlots 32 //numTimeSlots * RATE
    
    static const int8_t num_env_tab[2][4] = {
        { 0, 1, 2, 4, },
        { 1, 2, 3, 4, },
    };
    
    static const int8_t nr_iidicc_par_tab[] = {
        10, 20, 34, 10, 20, 34,
    };
    
    static const int8_t nr_iidopd_par_tab[] = {
         5, 11, 17,  5, 11, 17,
    };
    
    enum {
        huff_iid_df1,
        huff_iid_dt1,
        huff_iid_df0,
        huff_iid_dt0,
        huff_icc_df,
        huff_icc_dt,
        huff_ipd_df,
        huff_ipd_dt,
        huff_opd_df,
        huff_opd_dt,
    };
    
    static const int huff_iid[] = {
        huff_iid_df0,
        huff_iid_df1,
        huff_iid_dt0,
        huff_iid_dt1,
    };
    
    static VLC vlc_ps[10];
    
    
    #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
    
    /** \
     * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
     * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
     * bitstream. \
     * \
     * @param avctx contains the current codec context \
     * @param gb    pointer to the input bitstream \
     * @param ps    pointer to the Parametric Stereo context \
     * @param PAR   pointer to the parameter to be read \
     * @param e     envelope to decode \
     * @param dt    1: time delta-coded, 0: frequency delta-coded \
     */ \
    
    static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
    
                            int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
    { \
        int b, num = ps->nr_ ## PAR ## _par; \
        VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
        if (dt) { \
            int e_prev = e ? e - 1 : ps->num_env_old - 1; \
            e_prev = FFMAX(e_prev, 0); \
            for (b = 0; b < num; b++) { \
                int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
                if (MASK) val &= MASK; \
                PAR[e][b] = val; \
                if (ERR_CONDITION) \
                    goto err; \
            } \
        } else { \
            int val = 0; \
            for (b = 0; b < num; b++) { \
                val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
                if (MASK) val &= MASK; \
                PAR[e][b] = val; \
                if (ERR_CONDITION) \
                    goto err; \
            } \
        } \
        return 0; \
    err: \
        av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
        return -1; \
    
    READ_PAR_DATA(iid,    huff_offset[table_idx],    0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
    READ_PAR_DATA(icc,    huff_offset[table_idx],    0, ps->icc_par[e][b] > 7U)
    READ_PAR_DATA(ipdopd,                      0, 0x07, 0)
    
    static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
    
    {
        int e;
        int count = get_bits_count(gb);
    
        if (ps_extension_id)
            return 0;
    
        ps->enable_ipdopd = get_bits1(gb);
        if (ps->enable_ipdopd) {
            for (e = 0; e < ps->num_env; e++) {
                int dt = get_bits1(gb);
    
                read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
    
                dt = get_bits1(gb);
    
                read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
    
            }
        }
        skip_bits1(gb);      //reserved_ps
        return get_bits_count(gb) - count;
    }
    
    
    static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
    
    {
        int i;
        for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
            opd_hist[i] = 0;
            ipd_hist[i] = 0;
        }
    }
    
    
    int AAC_RENAME(ff_ps_read_data)(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
    
    {
        int e;
        int bit_count_start = get_bits_count(gb_host);
        int header;
        int bits_consumed;
        GetBitContext gbc = *gb_host, *gb = &gbc;
    
        header = get_bits1(gb);
        if (header) {     //enable_ps_header
            ps->enable_iid = get_bits1(gb);
            if (ps->enable_iid) {
    
                int iid_mode = get_bits(gb, 3);
                if (iid_mode > 5) {
    
                    av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
    
                ps->nr_iid_par    = nr_iidicc_par_tab[iid_mode];
                ps->iid_quant     = iid_mode > 2;
                ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
    
            }
            ps->enable_icc = get_bits1(gb);
            if (ps->enable_icc) {
                ps->icc_mode = get_bits(gb, 3);
                if (ps->icc_mode > 5) {
                    av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
                           ps->icc_mode);
                    goto err;
                }
                ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
            }
            ps->enable_ext = get_bits1(gb);
        }
    
        ps->frame_class = get_bits1(gb);
        ps->num_env_old = ps->num_env;
        ps->num_env     = num_env_tab[ps->frame_class][get_bits(gb, 2)];
    
        ps->border_position[0] = -1;
        if (ps->frame_class) {
            for (e = 1; e <= ps->num_env; e++)
                ps->border_position[e] = get_bits(gb, 5);
        } else
            for (e = 1; e <= ps->num_env; e++)
    
                ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
    
    
        if (ps->enable_iid) {
            for (e = 0; e < ps->num_env; e++) {
                int dt = get_bits1(gb);
    
                if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
    
                    goto err;
            }
        } else
            memset(ps->iid_par, 0, sizeof(ps->iid_par));
    
        if (ps->enable_icc)
            for (e = 0; e < ps->num_env; e++) {
                int dt = get_bits1(gb);
    
                if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
    
                    goto err;
            }
        else
            memset(ps->icc_par, 0, sizeof(ps->icc_par));
    
        if (ps->enable_ext) {
            int cnt = get_bits(gb, 4);
            if (cnt == 15) {
                cnt += get_bits(gb, 8);
            }
            cnt *= 8;
            while (cnt > 7) {
                int ps_extension_id = get_bits(gb, 2);
    
                cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
    
                av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
    
                goto err;
            }
            skip_bits(gb, cnt);
        }
    
        ps->enable_ipdopd &= !PS_BASELINE;
    
        //Fix up envelopes
        if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
            //Create a fake envelope
            int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
    
            if (source >= 0 && source != ps->num_env) {
    
                if (ps->enable_iid) {
    
                    memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
                }
    
                if (ps->enable_icc) {
    
                    memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
                }
    
                if (ps->enable_ipdopd) {
    
                    memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
                    memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
                }
            }
    
            if (ps->enable_iid){
                for (b = 0; b < ps->nr_iid_par; b++) {
                    if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
                        av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
                        goto err;
                    }
                }
            }
            if (ps->enable_icc){
                for (b = 0; b < ps->nr_iid_par; b++) {
                    if (ps->icc_par[ps->num_env][b] > 7U) {
                        av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
                        goto err;
                    }
                }
            }
    
            ps->num_env++;
            ps->border_position[ps->num_env] = numQMFSlots - 1;
        }
    
    
        ps->is34bands_old = ps->is34bands;
        if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
            ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
                            (ps->enable_icc && ps->nr_icc_par == 34);
    
        //Baseline
        if (!ps->enable_ipdopd) {
            memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
            memset(ps->opd_par, 0, sizeof(ps->opd_par));
        }
    
        if (header)
            ps->start = 1;
    
        bits_consumed = get_bits_count(gb) - bit_count_start;
        if (bits_consumed <= bits_left) {
            skip_bits_long(gb_host, bits_consumed);
            return bits_consumed;
        }
        av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
    err:
        ps->start = 0;
        skip_bits_long(gb_host, bits_left);
    
        memset(ps->iid_par, 0, sizeof(ps->iid_par));
        memset(ps->icc_par, 0, sizeof(ps->icc_par));
        memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
        memset(ps->opd_par, 0, sizeof(ps->opd_par));
    
        return bits_left;
    }
    
    /** Split one subband into 2 subsubbands with a symmetric real filter.
     * The filter must have its non-center even coefficients equal to zero. */
    
    static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], const INTFLOAT filter[8], int len, int reverse)
    
        for (i = 0; i < len; i++, in++) {
    
            INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
            INT64FLOAT re_op = 0.0f;                          //real out of phase
            INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
            INT64FLOAT im_op = 0.0f;                          //imag out of phase
    
            for (j = 0; j < 6; j += 2) {
    
                re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
                im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
    
    
    #if USE_FIXED
            re_op = (re_op + 0x40000000) >> 31;
            im_op = (im_op + 0x40000000) >> 31;
    #endif /* USE_FIXED */
    
            out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
            out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
            out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
            out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
    
        }
    }
    
    /** Split one subband into 6 subsubbands with a complex filter */
    
    static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
                           TABLE_CONST INTFLOAT (*filter)[8][2], int len)
    
        LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
    
        for (i = 0; i < len; i++, in++) {
    
            dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
    
            out[0][i][0] = temp[6][0];
            out[0][i][1] = temp[6][1];
            out[1][i][0] = temp[7][0];
            out[1][i][1] = temp[7][1];
            out[2][i][0] = temp[0][0];
            out[2][i][1] = temp[0][1];
            out[3][i][0] = temp[1][0];
            out[3][i][1] = temp[1][1];
            out[4][i][0] = temp[2][0] + temp[5][0];
            out[4][i][1] = temp[2][1] + temp[5][1];
            out[5][i][0] = temp[3][0] + temp[4][0];
            out[5][i][1] = temp[3][1] + temp[4][1];
        }
    }
    
    
    static void hybrid4_8_12_cx(PSDSPContext *dsp,
    
                                INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
                                TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
    
        for (i = 0; i < len; i++, in++) {
    
            dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
    
    static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
                                INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
    
                                int is34, int len)
    
    {
        int i, j;
        for (i = 0; i < 5; i++) {
            for (j = 0; j < 38; j++) {
                in[i][j+6][0] = L[0][j][i];
                in[i][j+6][1] = L[1][j][i];
            }
        }
    
    Alex Converse's avatar
    Alex Converse committed
        if (is34) {
    
            hybrid4_8_12_cx(dsp, in[0], out,    f34_0_12, 12, len);
            hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8,   8, len);
            hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4,   4, len);
            hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4,   4, len);
            hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4,   4, len);
            dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
    
            hybrid6_cx(dsp, in[0], out, f20_0_8, len);
    
            hybrid2_re(in[1], out+6, g1_Q2, len, 1);
            hybrid2_re(in[2], out+8, g1_Q2, len, 0);
    
            dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
    
        }
        //update in_buf
        for (i = 0; i < 5; i++) {
            memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
        }
    }
    
    
    static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
                                 INTFLOAT in[91][32][2], int is34, int len)
    
    Alex Converse's avatar
    Alex Converse committed
        if (is34) {
    
            for (n = 0; n < len; n++) {
                memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
                memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
    
    Alex Converse's avatar
    Alex Converse committed
                for (i = 0; i < 12; i++) {
    
                    out[0][n][0] += in[   i][n][0];
                    out[1][n][0] += in[   i][n][1];
                }
    
    Alex Converse's avatar
    Alex Converse committed
                for (i = 0; i < 8; i++) {
    
                    out[0][n][1] += in[12+i][n][0];
                    out[1][n][1] += in[12+i][n][1];
                }
    
    Alex Converse's avatar
    Alex Converse committed
                for (i = 0; i < 4; i++) {
    
                    out[0][n][2] += in[20+i][n][0];
                    out[1][n][2] += in[20+i][n][1];
                    out[0][n][3] += in[24+i][n][0];
                    out[1][n][3] += in[24+i][n][1];
                    out[0][n][4] += in[28+i][n][0];
                    out[1][n][4] += in[28+i][n][1];
                }
            }
    
            dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
    
        } else {
            for (n = 0; n < len; n++) {
                out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
                               in[3][n][0] + in[4][n][0] + in[5][n][0];
                out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
                               in[3][n][1] + in[4][n][1] + in[5][n][1];
                out[0][n][1] = in[6][n][0] + in[7][n][0];
                out[1][n][1] = in[6][n][1] + in[7][n][1];
                out[0][n][2] = in[8][n][0] + in[9][n][0];
                out[1][n][2] = in[8][n][1] + in[9][n][1];
            }
    
            dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
    
        }
    }
    
    /// All-pass filter decay slope
    
    #define DECAY_SLOPE      Q30(0.05f)
    
    /// Number of frequency bands that can be addressed by the parameter index, b(k)
    static const int   NR_PAR_BANDS[]      = { 20, 34 };
    
    static const int   NR_IPDOPD_BANDS[]   = { 11, 17 };
    
    /// Number of frequency bands that can be addressed by the sub subband index, k
    static const int   NR_BANDS[]          = { 71, 91 };
    /// Start frequency band for the all-pass filter decay slope
    static const int   DECAY_CUTOFF[]      = { 10, 32 };
    /// Number of all-pass filer bands
    static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
    /// First stereo band using the short one sample delay
    static const int   SHORT_DELAY_BAND[]  = { 42, 62 };
    
    /** Table 8.46 */
    static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
    {
        int b;
        if (full)
            b = 9;
        else {
            b = 4;
            par_mapped[10] = 0;
        }
        for (; b >= 0; b--) {
            par_mapped[2*b+1] = par_mapped[2*b] = par[b];
        }
    }
    
    static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
    {
        par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
        par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
        par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
        par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
        par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
        par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
        par_mapped[ 6] =    par[10];
        par_mapped[ 7] =    par[11];
        par_mapped[ 8] = (  par[12] +   par[13]) / 2;
        par_mapped[ 9] = (  par[14] +   par[15]) / 2;
        par_mapped[10] =    par[16];
        if (full) {
            par_mapped[11] =    par[17];
            par_mapped[12] =    par[18];
            par_mapped[13] =    par[19];
            par_mapped[14] = (  par[20] +   par[21]) / 2;
            par_mapped[15] = (  par[22] +   par[23]) / 2;
            par_mapped[16] = (  par[24] +   par[25]) / 2;
            par_mapped[17] = (  par[26] +   par[27]) / 2;
            par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
            par_mapped[19] = (  par[32] +   par[33]) / 2;
        }
    }
    
    
    static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
    
    #if USE_FIXED
        par[ 0] = (int)(((int64_t)(par[ 0] + (par[ 1]>>1)) * 1431655765 + \
                          0x40000000) >> 31);
        par[ 1] = (int)(((int64_t)((par[ 1]>>1) + par[ 2]) * 1431655765 + \
                          0x40000000) >> 31);
        par[ 2] = (int)(((int64_t)(par[ 3] + (par[ 4]>>1)) * 1431655765 + \
                          0x40000000) >> 31);
        par[ 3] = (int)(((int64_t)((par[ 4]>>1) + par[ 5]) * 1431655765 + \
                          0x40000000) >> 31);
    #else
    
        par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
        par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
        par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
        par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
    
    #endif /* USE_FIXED */
        par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
        par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
    
        par[ 6] =    par[10];
        par[ 7] =    par[11];
    
        par[ 8] = AAC_HALF_SUM(par[12], par[13]);
        par[ 9] = AAC_HALF_SUM(par[14], par[15]);
    
        par[10] =    par[16];
        par[11] =    par[17];
        par[12] =    par[18];
        par[13] =    par[19];
    
        par[14] = AAC_HALF_SUM(par[20], par[21]);
        par[15] = AAC_HALF_SUM(par[22], par[23]);
        par[16] = AAC_HALF_SUM(par[24], par[25]);
        par[17] = AAC_HALF_SUM(par[26], par[27]);
    #if USE_FIXED
        par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
    #else
    
        par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
    
    #endif /* USE_FIXED */
        par[19] = AAC_HALF_SUM(par[32], par[33]);
    
    }
    
    static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
    {
        if (full) {
            par_mapped[33] = par[9];
            par_mapped[32] = par[9];
            par_mapped[31] = par[9];
            par_mapped[30] = par[9];
            par_mapped[29] = par[9];
            par_mapped[28] = par[9];
            par_mapped[27] = par[8];
            par_mapped[26] = par[8];
            par_mapped[25] = par[8];
            par_mapped[24] = par[8];
            par_mapped[23] = par[7];
            par_mapped[22] = par[7];
            par_mapped[21] = par[7];
            par_mapped[20] = par[7];
            par_mapped[19] = par[6];
            par_mapped[18] = par[6];
            par_mapped[17] = par[5];
            par_mapped[16] = par[5];
        } else {
            par_mapped[16] =      0;
        }
        par_mapped[15] = par[4];
        par_mapped[14] = par[4];
        par_mapped[13] = par[4];
        par_mapped[12] = par[4];
        par_mapped[11] = par[3];
        par_mapped[10] = par[3];
        par_mapped[ 9] = par[2];
        par_mapped[ 8] = par[2];
        par_mapped[ 7] = par[2];
        par_mapped[ 6] = par[2];
        par_mapped[ 5] = par[1];
        par_mapped[ 4] = par[1];
        par_mapped[ 3] = par[1];
        par_mapped[ 2] = par[0];
        par_mapped[ 1] = par[0];
        par_mapped[ 0] = par[0];
    }
    
    static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
    {
        if (full) {
            par_mapped[33] =  par[19];
            par_mapped[32] =  par[19];
            par_mapped[31] =  par[18];
            par_mapped[30] =  par[18];
            par_mapped[29] =  par[18];
            par_mapped[28] =  par[18];
            par_mapped[27] =  par[17];
            par_mapped[26] =  par[17];
            par_mapped[25] =  par[16];
            par_mapped[24] =  par[16];
            par_mapped[23] =  par[15];
            par_mapped[22] =  par[15];
            par_mapped[21] =  par[14];
            par_mapped[20] =  par[14];
            par_mapped[19] =  par[13];
            par_mapped[18] =  par[12];
            par_mapped[17] =  par[11];
        }
        par_mapped[16] =  par[10];
        par_mapped[15] =  par[ 9];
        par_mapped[14] =  par[ 9];
        par_mapped[13] =  par[ 8];
        par_mapped[12] =  par[ 8];
        par_mapped[11] =  par[ 7];
        par_mapped[10] =  par[ 6];
        par_mapped[ 9] =  par[ 5];
        par_mapped[ 8] =  par[ 5];
        par_mapped[ 7] =  par[ 4];
        par_mapped[ 6] =  par[ 4];
        par_mapped[ 5] =  par[ 3];
        par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
        par_mapped[ 3] =  par[ 2];
        par_mapped[ 2] =  par[ 1];
        par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
        par_mapped[ 0] =  par[ 0];
    }
    
    
    static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
    
    {
        par[33] =  par[19];
        par[32] =  par[19];
        par[31] =  par[18];
        par[30] =  par[18];
        par[29] =  par[18];
        par[28] =  par[18];
        par[27] =  par[17];
        par[26] =  par[17];
        par[25] =  par[16];
        par[24] =  par[16];
        par[23] =  par[15];
        par[22] =  par[15];
        par[21] =  par[14];
        par[20] =  par[14];
        par[19] =  par[13];
        par[18] =  par[12];
        par[17] =  par[11];
        par[16] =  par[10];
        par[15] =  par[ 9];
        par[14] =  par[ 9];
        par[13] =  par[ 8];
        par[12] =  par[ 8];
        par[11] =  par[ 7];
        par[10] =  par[ 6];
        par[ 9] =  par[ 5];
        par[ 8] =  par[ 5];
        par[ 7] =  par[ 4];
        par[ 6] =  par[ 4];
        par[ 5] =  par[ 3];
    
        par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
    
        par[ 3] =  par[ 2];
        par[ 2] =  par[ 1];
    
        par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
    
    static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
    
        LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]);
        LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
        INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
        INTFLOAT *power_smooth = ps->power_smooth;
        INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
        INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
        INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
    #if !USE_FIXED
    
        const float transient_impact  = 1.5f;
    
        const float a_smooth          = 0.25f; ///< Smoothing coefficient
    
    #endif /* USE_FIXED */
        const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
    
        int i, k, m, n;
        int n0 = 0, nL = 32;
    
        const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
    
    Mans Rullgard's avatar
    Mans Rullgard committed
        memset(power, 0, 34 * sizeof(*power));
    
    
        if (is34 != ps->is34bands_old) {
            memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
            memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
            memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
            memset(ps->delay,                  0, sizeof(ps->delay));
            memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
        }
    
    
        for (k = 0; k < NR_BANDS[is34]; k++) {
            int i = k_to_i[k];
            ps->dsp.add_squares(power[i], s[k], nL - n0);
    
        }
    
        //Transient detection
    
    #if USE_FIXED
        for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
            for (n = n0; n < nL; n++) {
                int decayed_peak;
                int denom;
    
                decayed_peak = (int)(((int64_t)peak_decay_factor * \
                                               peak_decay_nrg[i] + 0x40000000) >> 31);
                peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
                power_smooth[i] += (power[i][n] - power_smooth[i] + 2) >> 2;
                peak_decay_diff_smooth[i] += (peak_decay_nrg[i] - power[i][n] - \
                                              peak_decay_diff_smooth[i] + 2) >> 2;
                denom = peak_decay_diff_smooth[i] + (peak_decay_diff_smooth[i] >> 1);
                if (denom > power_smooth[i]) {
                  int p = power_smooth[i];
                  while (denom < 0x40000000) {
                    denom <<= 1;
                    p <<= 1;
                  }
                  transient_gain[i][n] = p / (denom >> 16);
                }
                else {
                  transient_gain[i][n] = 1 << 16;
                }
            }
        }
    #else
    
        for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
            for (n = n0; n < nL; n++) {
                float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
                float denom;
                peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
                power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
                peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
                denom = transient_impact * peak_decay_diff_smooth[i];
                transient_gain[i][n]   = (denom > power_smooth[i]) ?
                                             power_smooth[i] / denom : 1.0f;
            }
        }
    
    
        //Decorrelation and transient reduction
        //                         PS_AP_LINKS - 1
        //                               -----
        //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
        //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
        //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
        //                               m = 0
        //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
        for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
            int b = k_to_i[k];
    
    #if USE_FIXED
            int g_decay_slope;
    
            if (k - DECAY_CUTOFF[is34] <= 0) {
              g_decay_slope = 1 << 30;
            }
            else if (k - DECAY_CUTOFF[is34] >= 20) {
              g_decay_slope = 0;
            }
            else {
              g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
            }
    #else
    
            float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
            g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
    
            memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
            memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
            for (m = 0; m < PS_AP_LINKS; m++) {
                memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
            }
    
            ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
    
                                (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
    
                                transient_gain[b], g_decay_slope, nL - n0);
    
        }
        for (; k < SHORT_DELAY_BAND[is34]; k++) {
    
            int i = k_to_i[k];
    
            memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
            memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
    
            //H = delay 14
            ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
                                    transient_gain[i], nL - n0);
    
        }
        for (; k < NR_BANDS[is34]; k++) {
    
            int i = k_to_i[k];
    
            memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
            memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
    
            //H = delay 1
            ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
                                    transient_gain[i], nL - n0);
    
        }
    }
    
    static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
                        int8_t           (*par)[PS_MAX_NR_IIDICC],
                        int num_par, int num_env, int full)
    {
        int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
        int e;
        if (num_par == 20 || num_par == 11) {
            for (e = 0; e < num_env; e++) {
                map_idx_20_to_34(par_mapped[e], par[e], full);
            }
        } else if (num_par == 10 || num_par == 5) {
            for (e = 0; e < num_env; e++) {
                map_idx_10_to_34(par_mapped[e], par[e], full);
            }
        } else {
            *p_par_mapped = par;
        }
    }
    
    static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
                        int8_t           (*par)[PS_MAX_NR_IIDICC],
                        int num_par, int num_env, int full)
    {
        int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
        int e;
        if (num_par == 34 || num_par == 17) {
            for (e = 0; e < num_env; e++) {
                map_idx_34_to_20(par_mapped[e], par[e], full);
            }
        } else if (num_par == 10 || num_par == 5) {
            for (e = 0; e < num_env; e++) {
                map_idx_10_to_20(par_mapped[e], par[e], full);
            }
        } else {
            *p_par_mapped = par;
        }
    }
    
    
    static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
    
        INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
        INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
        INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
        INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
    
        int8_t *opd_hist = ps->opd_hist;
        int8_t *ipd_hist = ps->ipd_hist;
        int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
        int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
        int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
        int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
        int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
        int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
        int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
        int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
        const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
    
        TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
    
        if (ps->num_env_old) {
            memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
            memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
            memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
            memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
            memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
            memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
            memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
            memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
        }
    
    
        if (is34) {
            remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
            remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
            if (ps->enable_ipdopd) {
                remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
                remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
            }
            if (!ps->is34bands_old) {
                map_val_20_to_34(H11[0][0]);
                map_val_20_to_34(H11[1][0]);
                map_val_20_to_34(H12[0][0]);
                map_val_20_to_34(H12[1][0]);
                map_val_20_to_34(H21[0][0]);
                map_val_20_to_34(H21[1][0]);
                map_val_20_to_34(H22[0][0]);
                map_val_20_to_34(H22[1][0]);
                ipdopd_reset(ipd_hist, opd_hist);
            }
        } else {
            remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
            remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
            if (ps->enable_ipdopd) {
                remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
                remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
            }
            if (ps->is34bands_old) {
                map_val_34_to_20(H11[0][0]);
                map_val_34_to_20(H11[1][0]);
                map_val_34_to_20(H12[0][0]);
                map_val_34_to_20(H12[1][0]);
                map_val_34_to_20(H21[0][0]);
                map_val_34_to_20(H21[1][0]);
                map_val_34_to_20(H22[0][0]);
                map_val_34_to_20(H22[1][0]);
                ipdopd_reset(ipd_hist, opd_hist);
            }
        }
    
        //Mixing
        for (e = 0; e < ps->num_env; e++) {
            for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
    
                INTFLOAT h11, h12, h21, h22;
    
                h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
                h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
                h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
                h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
    
                if (!PS_BASELINE && ps->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
    
                    //The spec say says to only run this smoother when enable_ipdopd
                    //is set but the reference decoder appears to run it constantly
    
                    INTFLOAT h11i, h12i, h21i, h22i;
                    INTFLOAT ipd_adj_re, ipd_adj_im;
    
                    int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
                    int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
    
                    INTFLOAT opd_re = pd_re_smooth[opd_idx];
                    INTFLOAT opd_im = pd_im_smooth[opd_idx];
                    INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
                    INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
    
                    opd_hist[b] = opd_idx & 0x3F;
                    ipd_hist[b] = ipd_idx & 0x3F;
    
    
                    ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
                    ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
                    h11i = AAC_MUL30(h11,  opd_im);
                    h11  = AAC_MUL30(h11,  opd_re);
                    h12i = AAC_MUL30(h12,  ipd_adj_im);
                    h12  = AAC_MUL30(h12,  ipd_adj_re);
                    h21i = AAC_MUL30(h21,  opd_im);
                    h21  = AAC_MUL30(h21,  opd_re);
                    h22i = AAC_MUL30(h22,  ipd_adj_im);
                    h22  = AAC_MUL30(h22,  ipd_adj_re);
    
                    H11[1][e+1][b] = h11i;
                    H12[1][e+1][b] = h12i;
                    H21[1][e+1][b] = h21i;
                    H22[1][e+1][b] = h22i;
                }
                H11[0][e+1][b] = h11;
                H12[0][e+1][b] = h12;
                H21[0][e+1][b] = h21;
                H22[0][e+1][b] = h22;
            }
            for (k = 0; k < NR_BANDS[is34]; k++) {
    
                LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
                LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
    
                int start = ps->border_position[e];
                int stop  = ps->border_position[e+1];
    
                INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1);
    
                b = k_to_i[k];
    
                h[0][0] = H11[0][e][b];
                h[0][1] = H12[0][e][b];
                h[0][2] = H21[0][e][b];
                h[0][3] = H22[0][e][b];
    
                if (!PS_BASELINE && ps->enable_ipdopd) {
                //Is this necessary? ps_04_new seems unchanged
                if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
    
                    h[1][0] = -H11[1][e][b];
                    h[1][1] = -H12[1][e][b];
                    h[1][2] = -H21[1][e][b];
                    h[1][3] = -H22[1][e][b];
    
                    h[1][0] = H11[1][e][b];
                    h[1][1] = H12[1][e][b];
                    h[1][2] = H21[1][e][b];
                    h[1][3] = H22[1][e][b];
    
                h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
                h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
                h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
                h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
    
                if (!PS_BASELINE && ps->enable_ipdopd) {
    
                    h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
                    h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
                    h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
                    h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
    
                ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
                    l[k] + start + 1, r[k] + start + 1,
                    h, h_step, stop - start);
    
    int AAC_RENAME(ff_ps_apply)(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
    
        INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
        INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
    
        const int len = 32;
        int is34 = ps->is34bands;
    
        top += NR_BANDS[is34] - 64;
        memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
        if (top < NR_ALLPASS_BANDS[is34])
            memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
    
    
        hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
    
        decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
    
        stereo_processing(ps, Lbuf, Rbuf, is34);
    
        hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
        hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);