Skip to content
Snippets Groups Projects
aacenc_pred.c 12.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC encoder main-type prediction
     * Copyright (C) 2015 Rostislav Pehlivanov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file
    
     * AAC encoder main-type prediction
    
     * @author Rostislav Pehlivanov ( atomnuker gmail com )
     */
    
    #include "aactab.h"
    #include "aacenc_pred.h"
    #include "aacenc_utils.h"
    
    #include "aacenc_is.h"            /* <- Needed for common window distortions */
    
    #include "aacenc_quantization.h"
    
    
    #define RESTORE_PRED(sce, sfb) \
            if (sce->ics.prediction_used[sfb]) {\
                sce->ics.prediction_used[sfb] = 0;\
                sce->band_type[sfb] = sce->band_alt[sfb];\
            }
    
    
    static inline float flt16_round(float pf)
    {
        union av_intfloat32 tmp;
        tmp.f = pf;
        tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
        return tmp.f;
    }
    
    static inline float flt16_even(float pf)
    {
        union av_intfloat32 tmp;
        tmp.f = pf;
        tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
        return tmp.f;
    }
    
    static inline float flt16_trunc(float pf)
    {
        union av_intfloat32 pun;
        pun.f = pf;
        pun.i &= 0xFFFF0000U;
        return pun.f;
    }
    
    
    static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set)
    
    {
        float k2;
        const float a     = 0.953125; // 61.0 / 64
    
        const float alpha = 0.90625;  // 29.0 / 32
        const float   k1 = ps->k1;
        const float   r0 = ps->r0,     r1 = ps->r1;
        const float cor0 = ps->cor0, cor1 = ps->cor1;
        const float var0 = ps->var0, var1 = ps->var1;
        const float e0 = *coef - ps->x_est;
        const float e1 = e0 - k1 * r0;
    
        if (set)
            *coef = e0;
    
    
        ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
        ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
        ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
        ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
    
        ps->r1   = flt16_trunc(a * (r0 - k1 * e0));
        ps->r0   = flt16_trunc(a * e0);
    
        /* Prediction for next frame */
        ps->k1   = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
        k2       = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
        *rcoef   = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1);
    
    }
    
    static inline void reset_predict_state(PredictorState *ps)
    {
    
        ps->r0    = 0.0f;
        ps->r1    = 0.0f;
        ps->k1    = 0.0f;
        ps->cor0  = 0.0f;
        ps->cor1  = 0.0f;
        ps->var0  = 1.0f;
        ps->var1  = 1.0f;
        ps->x_est = 0.0f;
    
    static inline void reset_all_predictors(PredictorState *ps)
    
    {
        int i;
        for (i = 0; i < MAX_PREDICTORS; i++)
    
            reset_predict_state(&ps[i]);
    
    }
    
    static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
    {
        int i;
        PredictorState *ps = sce->predictor_state;
        for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
            reset_predict_state(&ps[i]);
    }
    
    
    void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
    
        const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
    
    
        if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
    
            for (sfb = 0; sfb < pmax; sfb++) {
                for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
    
                    predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
    
                            sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
    
            if (sce->ics.predictor_reset_group) {
                reset_predictor_group(sce, sce->ics.predictor_reset_group);
            }
        } else {
            reset_all_predictors(sce->predictor_state);
    
    /* If inc = 0 you can check if this returns 0 to see if you can reset freely */
    
    static inline int update_counters(IndividualChannelStream *ics, int inc)
    {
    
        for (i = 1; i < 31; i++) {
            ics->predictor_reset_count[i] += inc;
    
            if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
                return i; /* Reset this immediately */
    
    void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
    
        int start, w, w2, g, i, count = 0;
    
        SingleChannelElement *sce0 = &cpe->ch[0];
        SingleChannelElement *sce1 = &cpe->ch[1];
    
        const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
        const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
        const int pmax  = FFMIN(pmax0, pmax1);
    
        if (!cpe->common_window ||
            sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
            sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
    
            return;
    
        for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
            start = 0;
            for (g = 0; g < sce0->ics.num_swb; g++) {
                int sfb = w*16+g;
    
                int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb];
                float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
                struct AACISError ph_err1, ph_err2, *erf;
                if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) {
                    RESTORE_PRED(sce0, sfb);
                    RESTORE_PRED(sce1, sfb);
                    start += sce0->ics.swb_sizes[g];
                    continue;
                }
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
                        float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
                        float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
    
                        ener0  += coef0*coef0;
                        ener1  += coef1*coef1;
    
                        ener01 += (coef0 + coef1)*(coef0 + coef1);
                    }
                }
                ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
    
                                                 ener0, ener1, ener01, 1, -1);
    
                ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
    
                                                 ener0, ener1, ener01, 1, +1);
    
                erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
                if (erf->pass) {
                    sce0->ics.prediction_used[sfb] = 1;
                    sce1->ics.prediction_used[sfb] = 1;
    
                    RESTORE_PRED(sce0, sfb);
                    RESTORE_PRED(sce1, sfb);
    
                }
                start += sce0->ics.swb_sizes[g];
            }
        }
    
        sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
    }
    
    static void update_pred_resets(SingleChannelElement *sce)
    {
        int i, max_group_id_c, max_frame = 0;
        float avg_frame = 0.0f;
        IndividualChannelStream *ics = &sce->ics;
    
    
        /* Update the counters and immediately update any frame behind schedule */
    
        if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
            return;
    
        for (i = 1; i < 31; i++) {
    
            if (ics->predictor_reset_count[i] > max_frame) {
                max_group_id_c = i;
                max_frame = ics->predictor_reset_count[i];
            }
            avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
        }
    
    
        if (max_frame > PRED_RESET_MIN) {
    
            ics->predictor_reset_group = max_group_id_c;
        } else {
            ics->predictor_reset_group = 0;
        }
    }
    
    
    void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
    
        int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0;
        const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
        float *O34  = &s->scoefs[128*0], *P34 = &s->scoefs[128*1];
        float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3];
        float *QERR = &s->scoefs[128*4];
    
        if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            sce->ics.predictor_present = 0;
            return;
        }
    
        if (!sce->ics.predictor_initialized) {
            reset_all_predictors(sce->predictor_state);
            sce->ics.predictor_initialized = 1;
            memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float));
    
            for (i = 1; i < 31; i++)
                sce->ics.predictor_reset_count[i] = i;
        }
    
        update_pred_resets(sce);
    
        memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
    
        for (sfb = PRED_SFB_START; sfb < pmax; sfb++) {
            int cost1, cost2, cb_p;
            float dist1, dist2, dist_spec_err = 0.0f;
    
            const int cb_n = sce->zeroes[sfb] ? 0 : sce->band_type[sfb];
            const int cb_min = sce->zeroes[sfb] ? 0 : 1;
            const int cb_max = sce->zeroes[sfb] ? 0 : RESERVED_BT;
    
            const int start_coef = sce->ics.swb_offset[sfb];
            const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef;
            const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
    
    
            if (start_coef + num_coeffs > MAX_PREDICTORS ||
                (s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) ||
                sce->band_type[sfb] == NOISE_BT)
    
                continue;
    
            /* Normal coefficients */
    
            s->abs_pow34(O34, &sce->coeffs[start_coef], num_coeffs);
    
            dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL,
                                                  O34, num_coeffs, sce->sf_idx[sfb],
    
                                                  cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0);
    
            cost_coeffs += cost1;
    
            /* Encoded coefficients - needed for #bits, band type and quant. error */
            for (i = 0; i < num_coeffs; i++)
                SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i];
    
            s->abs_pow34(S34, SENT, num_coeffs);
    
            if (cb_n < RESERVED_BT)
    
                cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]), cb_min, cb_max);
    
            else
                cb_p = cb_n;
            quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs,
                                          sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY,
    
                                          &cost2, NULL, 0);
    
    
            /* Reconstructed coefficients - needed for distortion measurements */
            for (i = 0; i < num_coeffs; i++)
                sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f;
    
            s->abs_pow34(P34, &sce->prcoeffs[start_coef], num_coeffs);
    
            if (cb_n < RESERVED_BT)
    
                cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]), cb_min, cb_max);
    
            else
                cb_p = cb_n;
            dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL,
                                                  P34, num_coeffs, sce->sf_idx[sfb],
    
                                                  cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0);
    
            for (i = 0; i < num_coeffs; i++)
                dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]);
            dist_spec_err *= s->lambda / band->threshold;
            dist2 += dist_spec_err;
    
            if (dist2 <= dist1 && cb_p <= cb_n) {
                cost_pred += cost2;
                sce->ics.prediction_used[sfb] = 1;
                sce->band_alt[sfb]  = cb_n;
                sce->band_type[sfb] = cb_p;
                count++;
            } else {
                cost_pred += cost1;
                sce->band_alt[sfb] = cb_p;
    
        if (count && cost_coeffs < cost_pred) {
    
            for (sfb = PRED_SFB_START; sfb < pmax; sfb++)
                RESTORE_PRED(sce, sfb);
            memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
    
        }
    
        sce->ics.predictor_present = !!count;
    }
    
    /**
     * Encoder predictors data.
     */
    
    void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
    
        IndividualChannelStream *ics = &sce->ics;
        const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
    
        if (s->profile != FF_PROFILE_AAC_MAIN ||
            !ics->predictor_present)
    
        put_bits(&s->pb, 1, !!ics->predictor_reset_group);
        if (ics->predictor_reset_group)
            put_bits(&s->pb, 5, ics->predictor_reset_group);
        for (sfb = 0; sfb < pmax; sfb++)
            put_bits(&s->pb, 1, ics->prediction_used[sfb]);