Newer
Older
Fabrice Bellard
committed
in1 = in + j;
t3 = in1[2*0] + SHR(in1[2*6],1);
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
tmp1[10] = t3 - t0 - t2;
tmp1[ 2] = t3 + t0 + t1;
tmp1[14] = t3 + t2 - t1;
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
t0 = MULH3(in1[2*3], C3, 2);
Fabrice Bellard
committed
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
tmp1[ 0] = t2 + t3 + t0;
tmp1[12] = t2 + t1 - t0;
tmp1[ 8] = t3 - t1 - t0;
Fabrice Bellard
committed
}
i = 0;
for(j=0;j<4;j++) {
t0 = tmp[i];
t1 = tmp[i + 2];
s0 = t1 + t0;
s2 = t1 - t0;
t2 = tmp[i + 1];
t3 = tmp[i + 3];
s1 = MULH3(t3 + t2, icos36h[j], 2);
s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
Michael Niedermayer
committed
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
Michael Niedermayer
committed
t0 = s2 + s3;
t1 = s2 - s3;
out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
buf[ + j] = MULH3(t0, win[18 + j], 1);
Fabrice Bellard
committed
i += 4;
}
s0 = tmp[16];
s1 = MULH3(tmp[17], icos36h[4], 2);
Michael Niedermayer
committed
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
Fabrice Bellard
committed
}
/* return the number of decoded frames */
static int mp_decode_layer1(MPADecodeContext *s)
Fabrice Bellard
committed
int bound, i, v, n, ch, j, mant;
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
Fabrice Bellard
committed
Fabrice Bellard
committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
bound = (s->mode_ext + 1) * 4;
else
bound = SBLIMIT;
/* allocation bits */
for(i=0;i<bound;i++) {
for(ch=0;ch<s->nb_channels;ch++) {
allocation[ch][i] = get_bits(&s->gb, 4);
}
}
for(i=bound;i<SBLIMIT;i++) {
allocation[0][i] = get_bits(&s->gb, 4);
}
/* scale factors */
for(i=0;i<bound;i++) {
for(ch=0;ch<s->nb_channels;ch++) {
if (allocation[ch][i])
scale_factors[ch][i] = get_bits(&s->gb, 6);
}
}
for(i=bound;i<SBLIMIT;i++) {
if (allocation[0][i]) {
scale_factors[0][i] = get_bits(&s->gb, 6);
scale_factors[1][i] = get_bits(&s->gb, 6);
}
}
Fabrice Bellard
committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
/* compute samples */
for(j=0;j<12;j++) {
for(i=0;i<bound;i++) {
for(ch=0;ch<s->nb_channels;ch++) {
n = allocation[ch][i];
if (n) {
mant = get_bits(&s->gb, n + 1);
v = l1_unscale(n, mant, scale_factors[ch][i]);
} else {
v = 0;
}
s->sb_samples[ch][j][i] = v;
}
}
for(i=bound;i<SBLIMIT;i++) {
n = allocation[0][i];
if (n) {
mant = get_bits(&s->gb, n + 1);
v = l1_unscale(n, mant, scale_factors[0][i]);
s->sb_samples[0][j][i] = v;
v = l1_unscale(n, mant, scale_factors[1][i]);
s->sb_samples[1][j][i] = v;
} else {
s->sb_samples[0][j][i] = 0;
s->sb_samples[1][j][i] = 0;
}
}
}
return 12;
}
static int mp_decode_layer2(MPADecodeContext *s)
{
int sblimit; /* number of used subbands */
const unsigned char *alloc_table;
int table, bit_alloc_bits, i, j, ch, bound, v;
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
int scale, qindex, bits, steps, k, l, m, b;
Fabrice Bellard
committed
/* select decoding table */
table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
Fabrice Bellard
committed
s->sample_rate, s->lsf);
sblimit = ff_mpa_sblimit_table[table];
alloc_table = ff_mpa_alloc_tables[table];
Fabrice Bellard
committed
Fabrice Bellard
committed
bound = (s->mode_ext + 1) * 4;
else
bound = sblimit;
dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
/* sanity check */
if( bound > sblimit ) bound = sblimit;
Fabrice Bellard
committed
/* parse bit allocation */
j = 0;
for(i=0;i<bound;i++) {
bit_alloc_bits = alloc_table[j];
for(ch=0;ch<s->nb_channels;ch++) {
bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
}
j += 1 << bit_alloc_bits;
}
for(i=bound;i<sblimit;i++) {
bit_alloc_bits = alloc_table[j];
v = get_bits(&s->gb, bit_alloc_bits);
bit_alloc[0][i] = v;
bit_alloc[1][i] = v;
j += 1 << bit_alloc_bits;
Fabrice Bellard
committed
/* scale codes */
for(i=0;i<sblimit;i++) {
for(ch=0;ch<s->nb_channels;ch++) {
Fabrice Bellard
committed
scale_code[ch][i] = get_bits(&s->gb, 2);
}
}
Fabrice Bellard
committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
/* scale factors */
for(i=0;i<sblimit;i++) {
for(ch=0;ch<s->nb_channels;ch++) {
if (bit_alloc[ch][i]) {
sf = scale_factors[ch][i];
switch(scale_code[ch][i]) {
default:
case 0:
sf[0] = get_bits(&s->gb, 6);
sf[1] = get_bits(&s->gb, 6);
sf[2] = get_bits(&s->gb, 6);
break;
case 2:
sf[0] = get_bits(&s->gb, 6);
sf[1] = sf[0];
sf[2] = sf[0];
break;
case 1:
sf[0] = get_bits(&s->gb, 6);
sf[2] = get_bits(&s->gb, 6);
sf[1] = sf[0];
break;
case 3:
sf[0] = get_bits(&s->gb, 6);
sf[2] = get_bits(&s->gb, 6);
sf[1] = sf[2];
break;
}
}
}
}
/* samples */
for(k=0;k<3;k++) {
for(l=0;l<12;l+=3) {
j = 0;
for(i=0;i<bound;i++) {
bit_alloc_bits = alloc_table[j];
for(ch=0;ch<s->nb_channels;ch++) {
b = bit_alloc[ch][i];
if (b) {
scale = scale_factors[ch][i][k];
qindex = alloc_table[j+b];
bits = ff_mpa_quant_bits[qindex];
Fabrice Bellard
committed
if (bits < 0) {
/* 3 values at the same time */
v = get_bits(&s->gb, -bits);
steps = ff_mpa_quant_steps[qindex];
s->sb_samples[ch][k * 12 + l + 0][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, v % steps, scale);
v = v / steps;
s->sb_samples[ch][k * 12 + l + 1][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, v % steps, scale);
v = v / steps;
s->sb_samples[ch][k * 12 + l + 2][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, v, scale);
} else {
for(m=0;m<3;m++) {
v = get_bits(&s->gb, bits);
v = l1_unscale(bits - 1, v, scale);
s->sb_samples[ch][k * 12 + l + m][i] = v;
}
}
} else {
s->sb_samples[ch][k * 12 + l + 0][i] = 0;
s->sb_samples[ch][k * 12 + l + 1][i] = 0;
s->sb_samples[ch][k * 12 + l + 2][i] = 0;
}
}
/* next subband in alloc table */
Fabrice Bellard
committed
}
/* XXX: find a way to avoid this duplication of code */
for(i=bound;i<sblimit;i++) {
bit_alloc_bits = alloc_table[j];
b = bit_alloc[0][i];
if (b) {
int mant, scale0, scale1;
scale0 = scale_factors[0][i][k];
scale1 = scale_factors[1][i][k];
qindex = alloc_table[j+b];
bits = ff_mpa_quant_bits[qindex];
Fabrice Bellard
committed
if (bits < 0) {
/* 3 values at the same time */
v = get_bits(&s->gb, -bits);
steps = ff_mpa_quant_steps[qindex];
Fabrice Bellard
committed
mant = v % steps;
v = v / steps;
s->sb_samples[0][k * 12 + l + 0][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, mant, scale0);
s->sb_samples[1][k * 12 + l + 0][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, mant, scale1);
mant = v % steps;
v = v / steps;
s->sb_samples[0][k * 12 + l + 1][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, mant, scale0);
s->sb_samples[1][k * 12 + l + 1][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, mant, scale1);
s->sb_samples[0][k * 12 + l + 2][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, v, scale0);
s->sb_samples[1][k * 12 + l + 2][i] =
Fabrice Bellard
committed
l2_unscale_group(steps, v, scale1);
} else {
for(m=0;m<3;m++) {
mant = get_bits(&s->gb, bits);
s->sb_samples[0][k * 12 + l + m][i] =
Fabrice Bellard
committed
l1_unscale(bits - 1, mant, scale0);
s->sb_samples[1][k * 12 + l + m][i] =
Fabrice Bellard
committed
l1_unscale(bits - 1, mant, scale1);
}
}
} else {
s->sb_samples[0][k * 12 + l + 0][i] = 0;
s->sb_samples[0][k * 12 + l + 1][i] = 0;
s->sb_samples[0][k * 12 + l + 2][i] = 0;
s->sb_samples[1][k * 12 + l + 0][i] = 0;
s->sb_samples[1][k * 12 + l + 1][i] = 0;
s->sb_samples[1][k * 12 + l + 2][i] = 0;
}
/* next subband in alloc table */
Fabrice Bellard
committed
}
/* fill remaining samples to zero */
for(i=sblimit;i<SBLIMIT;i++) {
for(ch=0;ch<s->nb_channels;ch++) {
s->sb_samples[ch][k * 12 + l + 0][i] = 0;
s->sb_samples[ch][k * 12 + l + 1][i] = 0;
s->sb_samples[ch][k * 12 + l + 2][i] = 0;
}
}
}
}
return 3 * 12;
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
#define SPLIT(dst,sf,n)\
if(n==3){\
int m= (sf*171)>>9;\
dst= sf - 3*m;\
sf=m;\
}else if(n==4){\
dst= sf&3;\
sf>>=2;\
}else if(n==5){\
int m= (sf*205)>>10;\
dst= sf - 5*m;\
sf=m;\
}else if(n==6){\
int m= (sf*171)>>10;\
dst= sf - 6*m;\
sf=m;\
}else{\
dst=0;\
}
static av_always_inline void lsf_sf_expand(int *slen,
Fabrice Bellard
committed
int sf, int n1, int n2, int n3)
{
SPLIT(slen[3], sf, n3)
SPLIT(slen[2], sf, n2)
SPLIT(slen[1], sf, n1)
Fabrice Bellard
committed
slen[0] = sf;
}
static void exponents_from_scale_factors(MPADecodeContext *s,
Fabrice Bellard
committed
GranuleDef *g,
Fabrice Bellard
committed
{
Fabrice Bellard
committed
int len, i, j, k, l, v0, shift, gain, gains[3];
Fabrice Bellard
committed
exp_ptr = exponents;
gain = g->global_gain - 210;
shift = g->scalefac_scale + 1;
bstab = band_size_long[s->sample_rate_index];
pretab = mpa_pretab[g->preflag];
for(i=0;i<g->long_end;i++) {
v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
Fabrice Bellard
committed
len = bstab[i];
for(j=len;j>0;j--)
*exp_ptr++ = v0;
}
if (g->short_start < 13) {
bstab = band_size_short[s->sample_rate_index];
gains[0] = gain - (g->subblock_gain[0] << 3);
gains[1] = gain - (g->subblock_gain[1] << 3);
gains[2] = gain - (g->subblock_gain[2] << 3);
k = g->long_end;
for(i=g->short_start;i<13;i++) {
len = bstab[i];
for(l=0;l<3;l++) {
v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
Fabrice Bellard
committed
for(j=len;j>0;j--)
*exp_ptr++ = v0;
}
}
}
}
/* handle n = 0 too */
static inline int get_bitsz(GetBitContext *s, int n)
{
if (n == 0)
return 0;
else
return get_bits(s, n);
}
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
s->gb= s->in_gb;
s->in_gb.buffer=NULL;
assert((get_bits_count(&s->gb) & 7) == 0);
skip_bits_long(&s->gb, *pos - *end_pos);
*end_pos2=
*end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
*pos= get_bits_count(&s->gb);
}
}
Fabrice Bellard
committed
static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
Michael Niedermayer
committed
int16_t *exponents, int end_pos2)
Fabrice Bellard
committed
{
int s_index;
Michael Niedermayer
committed
int last_pos, bits_left;
Fabrice Bellard
committed
VLC *vlc;
Michael Niedermayer
committed
int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
Fabrice Bellard
committed
/* low frequencies (called big values) */
s_index = 0;
for(i=0;i<3;i++) {
int j, k, l, linbits;
Fabrice Bellard
committed
j = g->region_size[i];
if (j == 0)
continue;
/* select vlc table */
k = g->table_select[i];
l = mpa_huff_data[k][0];
linbits = mpa_huff_data[k][1];
vlc = &huff_vlc[l];
Michael Niedermayer
committed
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
s_index += 2*j;
continue;
}
Fabrice Bellard
committed
/* read huffcode and compute each couple */
for(;j>0;j--) {
int exponent, x, y;
INTFLOAT v;
Michael Niedermayer
committed
int pos= get_bits_count(&s->gb);
if (pos >= end_pos){
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
switch_buffer(s, &pos, &end_pos, &end_pos2);
Michael Niedermayer
committed
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
if(pos >= end_pos)
break;
}
y = get_vlc2(&s->gb, vlc->table, 7, 3);
if(!y){
g->sb_hybrid[s_index ] =
g->sb_hybrid[s_index+1] = 0;
s_index += 2;
continue;
}
dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
i, g->region_size[i] - j, x, y, exponent);
v = RENAME(expval_table)[ exponent ][ x ];
// v = RENAME(expval_table)[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
}else{
x += get_bitsz(&s->gb, linbits);
Fabrice Bellard
committed
if (get_bits1(&s->gb))
v = -v;
v = RENAME(expval_table)[ exponent ][ y ];
}else{
y += get_bitsz(&s->gb, linbits);
Fabrice Bellard
committed
if (get_bits1(&s->gb))
v = -v;
g->sb_hybrid[s_index+1] = v;
}else{
x = y >> 5;
y = y & 0x0f;
x += y;
if (x < 15){
v = RENAME(expval_table)[ exponent ][ x ];
}else{
x += get_bitsz(&s->gb, linbits);
v = l3_unscale(x, exponent);
}
if (get_bits1(&s->gb))
v = -v;
g->sb_hybrid[s_index+!!y] = v;
Fabrice Bellard
committed
}
Fabrice Bellard
committed
}
}
Fabrice Bellard
committed
/* high frequencies */
vlc = &huff_quad_vlc[g->count1table_select];
Fabrice Bellard
committed
while (s_index <= 572) {
int pos, code;
Fabrice Bellard
committed
pos = get_bits_count(&s->gb);
if (pos >= end_pos) {
if (pos > end_pos2 && last_pos){
/* some encoders generate an incorrect size for this
part. We must go back into the data */
s_index -= 4;
skip_bits_long(&s->gb, last_pos - pos);
av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
if(s->error_recognition >= FF_ER_COMPLIANT)
Michael Niedermayer
committed
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
switch_buffer(s, &pos, &end_pos, &end_pos2);
Michael Niedermayer
committed
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
if(pos >= end_pos)
break;
Fabrice Bellard
committed
}
Michael Niedermayer
committed
code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
g->sb_hybrid[s_index+0]=
g->sb_hybrid[s_index+1]=
g->sb_hybrid[s_index+2]=
g->sb_hybrid[s_index+3]= 0;
while(code){
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
int pos= s_index+idxtab[code];
code ^= 8>>idxtab[code];
v = RENAME(exp_table)[ exponents[pos] ];
// v = RENAME(exp_table)[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
if(get_bits1(&s->gb)) //FIXME try to flip the sign bit in int32_t, same above
Fabrice Bellard
committed
}
Fabrice Bellard
committed
}
Michael Niedermayer
committed
/* skip extension bits */
bits_left = end_pos2 - get_bits_count(&s->gb);
Michael Niedermayer
committed
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
}else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
Michael Niedermayer
committed
}
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
Michael Niedermayer
committed
skip_bits_long(&s->gb, bits_left);
switch_buffer(s, &i, &end_pos, &end_pos2);
Fabrice Bellard
committed
/* Reorder short blocks from bitstream order to interleaved order. It
would be faster to do it in parsing, but the code would be far more
complicated */
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
{
Michael Niedermayer
committed
int i, j, len;
INTFLOAT *ptr, *dst, *ptr1;
INTFLOAT tmp[576];
Fabrice Bellard
committed
if (g->block_type != 2)
return;
if (g->switch_point) {
if (s->sample_rate_index != 8) {
ptr = g->sb_hybrid + 36;
} else {
ptr = g->sb_hybrid + 48;
}
} else {
ptr = g->sb_hybrid;
}
Fabrice Bellard
committed
for(i=g->short_start;i<13;i++) {
len = band_size_short[s->sample_rate_index][i];
ptr1 = ptr;
Michael Niedermayer
committed
dst = tmp;
for(j=len;j>0;j--) {
*dst++ = ptr[0*len];
*dst++ = ptr[1*len];
*dst++ = ptr[2*len];
ptr++;
Fabrice Bellard
committed
}
Michael Niedermayer
committed
ptr+=2*len;
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
Fabrice Bellard
committed
}
}
#define ISQRT2 FIXR(0.70710678118654752440)
static void compute_stereo(MPADecodeContext *s,
GranuleDef *g0, GranuleDef *g1)
{
int i, j, k, l;
int sf_max, sf, len, non_zero_found;
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
Fabrice Bellard
committed
int non_zero_found_short[3];
/* intensity stereo */
if (s->mode_ext & MODE_EXT_I_STEREO) {
if (!s->lsf) {
is_tab = is_table;
sf_max = 7;
} else {
is_tab = is_table_lsf[g1->scalefac_compress & 1];
sf_max = 16;
}
Fabrice Bellard
committed
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
tab0 = g0->sb_hybrid + 576;
tab1 = g1->sb_hybrid + 576;
non_zero_found_short[0] = 0;
non_zero_found_short[1] = 0;
non_zero_found_short[2] = 0;
k = (13 - g1->short_start) * 3 + g1->long_end - 3;
for(i = 12;i >= g1->short_start;i--) {
/* for last band, use previous scale factor */
if (i != 11)
k -= 3;
len = band_size_short[s->sample_rate_index][i];
for(l=2;l>=0;l--) {
tab0 -= len;
tab1 -= len;
if (!non_zero_found_short[l]) {
/* test if non zero band. if so, stop doing i-stereo */
for(j=0;j<len;j++) {
if (tab1[j] != 0) {
non_zero_found_short[l] = 1;
goto found1;
}
}
sf = g1->scale_factors[k + l];
if (sf >= sf_max)
goto found1;
v1 = is_tab[0][sf];
v2 = is_tab[1][sf];
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
Fabrice Bellard
committed
}
} else {
found1:
if (s->mode_ext & MODE_EXT_MS_STEREO) {
/* lower part of the spectrum : do ms stereo
if enabled */
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tmp1 = tab1[j];
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
Fabrice Bellard
committed
}
}
}
}
}
non_zero_found = non_zero_found_short[0] |
non_zero_found_short[1] |
Fabrice Bellard
committed
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
non_zero_found_short[2];
for(i = g1->long_end - 1;i >= 0;i--) {
len = band_size_long[s->sample_rate_index][i];
tab0 -= len;
tab1 -= len;
/* test if non zero band. if so, stop doing i-stereo */
if (!non_zero_found) {
for(j=0;j<len;j++) {
if (tab1[j] != 0) {
non_zero_found = 1;
goto found2;
}
}
/* for last band, use previous scale factor */
k = (i == 21) ? 20 : i;
sf = g1->scale_factors[k];
if (sf >= sf_max)
goto found2;
v1 = is_tab[0][sf];
v2 = is_tab[1][sf];
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
Fabrice Bellard
committed
}
} else {
found2:
if (s->mode_ext & MODE_EXT_MS_STEREO) {
/* lower part of the spectrum : do ms stereo
if enabled */
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tmp1 = tab1[j];
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
Fabrice Bellard
committed
}
}
}
}
} else if (s->mode_ext & MODE_EXT_MS_STEREO) {
/* ms stereo ONLY */
/* NOTE: the 1/sqrt(2) normalization factor is included in the
global gain */
tab0 = g0->sb_hybrid;
tab1 = g1->sb_hybrid;
for(i=0;i<576;i++) {
tmp0 = tab0[i];
tmp1 = tab1[i];
tab0[i] = tmp0 + tmp1;
tab1[i] = tmp0 - tmp1;
}
}
}
Michael Niedermayer
committed
static void compute_antialias_integer(MPADecodeContext *s,
Fabrice Bellard
committed
GranuleDef *g)
{
Fabrice Bellard
committed
/* we antialias only "long" bands */
if (g->block_type == 2) {
if (!g->switch_point)
return;
/* XXX: check this for 8000Hz case */
n = 1;
} else {
n = SBLIMIT - 1;
}
Fabrice Bellard
committed
ptr = g->sb_hybrid + 18;
for(i = n;i > 0;i--) {
int tmp0, tmp1, tmp2;
csa = &csa_table[0][0];
#define INT_AA(j) \
Michael Niedermayer
committed
tmp0 = ptr[-1-j];\
tmp1 = ptr[ j];\
Michael Niedermayer
committed
ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
INT_AA(0)
INT_AA(1)
INT_AA(2)
INT_AA(3)
INT_AA(4)
INT_AA(5)
INT_AA(6)
INT_AA(7)
Michael Niedermayer
committed
}
}
static void compute_antialias_float(MPADecodeContext *s,
GranuleDef *g)
{
Michael Niedermayer
committed
/* we antialias only "long" bands */
if (g->block_type == 2) {
if (!g->switch_point)
return;
/* XXX: check this for 8000Hz case */
n = 1;
} else {
n = SBLIMIT - 1;
}
Michael Niedermayer
committed
ptr = g->sb_hybrid + 18;
for(i = n;i > 0;i--) {
float *csa = &csa_table_float[0][0];
#define FLOAT_AA(j)\
tmp0= ptr[-1-j];\
tmp1= ptr[ j];\
ptr[-1-j] = tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j];\
ptr[ j] = tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j];
FLOAT_AA(0)
FLOAT_AA(1)
FLOAT_AA(2)
FLOAT_AA(3)
FLOAT_AA(4)
FLOAT_AA(5)
FLOAT_AA(6)
FLOAT_AA(7)
Fabrice Bellard
committed
}
}
static void compute_imdct(MPADecodeContext *s,
INTFLOAT *sb_samples,
INTFLOAT *mdct_buf)
Fabrice Bellard
committed
{
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
INTFLOAT out2[12];
int i, j, mdct_long_end, sblimit;
Fabrice Bellard
committed
/* find last non zero block */
ptr = g->sb_hybrid + 576;
ptr1 = g->sb_hybrid + 2 * 18;
while (ptr >= ptr1) {
Fabrice Bellard
committed
ptr -= 6;
p= (int32_t*)ptr;
if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
Fabrice Bellard
committed
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
break;
}
sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
if (g->block_type == 2) {
/* XXX: check for 8000 Hz */
if (g->switch_point)
mdct_long_end = 2;
else
mdct_long_end = 0;
} else {
mdct_long_end = sblimit;
}
buf = mdct_buf;
ptr = g->sb_hybrid;
for(j=0;j<mdct_long_end;j++) {
/* apply window & overlap with previous buffer */
out_ptr = sb_samples + j;
/* select window */
if (g->switch_point && j < 2)
win1 = mdct_win[0];
else
win1 = mdct_win[g->block_type];
/* select frequency inversion */
win = win1 + ((4 * 36) & -(j & 1));
imdct36(out_ptr, buf, ptr, win);
out_ptr += 18*SBLIMIT;
Fabrice Bellard
committed
ptr += 18;
buf += 18;
}
for(j=mdct_long_end;j<sblimit;j++) {
/* select frequency inversion */
win = mdct_win[2] + ((4 * 36) & -(j & 1));
out_ptr = sb_samples + j;
for(i=0; i<6; i++){
*out_ptr = buf[i];
out_ptr += SBLIMIT;
}
imdct12(out2, ptr + 0);
for(i=0;i<6;i++) {
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
Fabrice Bellard
committed
out_ptr += SBLIMIT;
}
imdct12(out2, ptr + 1);
for(i=0;i<6;i++) {
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
out_ptr += SBLIMIT;
}
imdct12(out2, ptr + 2);
for(i=0;i<6;i++) {
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
Fabrice Bellard
committed
ptr += 18;
buf += 18;
}
/* zero bands */
for(j=sblimit;j<SBLIMIT;j++) {
/* overlap */
out_ptr = sb_samples + j;
for(i=0;i<18;i++) {
*out_ptr = buf[i];
buf[i] = 0;
out_ptr += SBLIMIT;
}
buf += 18;
}
}
/* main layer3 decoding function */
static int mp_decode_layer3(MPADecodeContext *s)
{
int nb_granules, main_data_begin, private_bits;
Michael Niedermayer
committed
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
int16_t exponents[576]; //FIXME try INTFLOAT
Fabrice Bellard
committed
/* read side info */
if (s->lsf) {
main_data_begin = get_bits(&s->gb, 8);
Fabrice Bellard
committed
nb_granules = 1;
} else {
main_data_begin = get_bits(&s->gb, 9);
if (s->nb_channels == 2)
private_bits = get_bits(&s->gb, 3);
else
private_bits = get_bits(&s->gb, 5);
nb_granules = 2;
for(ch=0;ch<s->nb_channels;ch++) {
s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
Fabrice Bellard
committed
}
}
Fabrice Bellard
committed
for(gr=0;gr<nb_granules;gr++) {
for(ch=0;ch<s->nb_channels;ch++) {
dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
Fabrice Bellard
committed
g->part2_3_length = get_bits(&s->gb, 12);
g->big_values = get_bits(&s->gb, 9);
av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
Fabrice Bellard
committed
g->global_gain = get_bits(&s->gb, 8);
/* if MS stereo only is selected, we precompute the
1/sqrt(2) renormalization factor */
if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
Fabrice Bellard
committed
MODE_EXT_MS_STEREO)
g->global_gain -= 2;
if (s->lsf)
g->scalefac_compress = get_bits(&s->gb, 9);
else
g->scalefac_compress = get_bits(&s->gb, 4);
blocksplit_flag = get_bits1(&s->gb);
Fabrice Bellard
committed
if (blocksplit_flag) {
g->block_type = get_bits(&s->gb, 2);
av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
Fabrice Bellard
committed
return -1;
g->switch_point = get_bits1(&s->gb);
Fabrice Bellard
committed
for(i=0;i<2;i++)
g->table_select[i] = get_bits(&s->gb, 5);
Fabrice Bellard
committed
g->subblock_gain[i] = get_bits(&s->gb, 3);
ff_init_short_region(s, g);
Fabrice Bellard
committed
} else {
int region_address1, region_address2;
Fabrice Bellard
committed
g->block_type = 0;
g->switch_point = 0;
for(i=0;i<3;i++)
g->table_select[i] = get_bits(&s->gb, 5);
/* compute huffman coded region sizes */
region_address1 = get_bits(&s->gb, 4);
region_address2 = get_bits(&s->gb, 3);
Fabrice Bellard
committed
region_address1, region_address2);
ff_init_long_region(s, g, region_address1, region_address2);
Fabrice Bellard
committed
}
ff_region_offset2size(g);
ff_compute_band_indexes(s, g);
Fabrice Bellard
committed
g->preflag = 0;
if (!s->lsf)
g->preflag = get_bits1(&s->gb);
g->scalefac_scale = get_bits1(&s->gb);
g->count1table_select = get_bits1(&s->gb);
dprintf(s->avctx, "block_type=%d switch_point=%d\n",
Fabrice Bellard
committed
g->block_type, g->switch_point);
}
}
Michael Niedermayer
committed
const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
Fabrice Bellard
committed
/* now we get bits from the main_data_begin offset */
dprintf(s->avctx, "seekback: %d\n", main_data_begin);
Michael Niedermayer
committed
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
s->in_gb= s->gb;
init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));