Skip to content
Snippets Groups Projects
aac.c 63.3 KiB
Newer Older
  • Learn to ignore specific revisions
  •  *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
        Pulse pulse;
        TemporalNoiseShaping * tns = &sce->tns;
        IndividualChannelStream * ics = &sce->ics;
        float * out = sce->coeffs;
        int global_gain, pulse_present = 0;
    
    
        /* This assignment is to silence a GCC warning about the variable being used
         * uninitialized when in fact it always is.
    
         */
        pulse.num_pulse = 0;
    
        global_gain = get_bits(gb, 8);
    
        if (!common_window && !scale_flag) {
            if (decode_ics_info(ac, ics, gb, 0) < 0)
                return -1;
        }
    
        if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
            return -1;
        if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
            return -1;
    
        pulse_present = 0;
        if (!scale_flag) {
            if ((pulse_present = get_bits1(gb))) {
                if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
                    av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
                    return -1;
                }
    
                if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
                    av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
                    return -1;
                }
    
            }
            if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
                return -1;
            if (get_bits1(gb)) {
    
                av_log_missing_feature(ac->avccontext, "SSR", 1);
    
        if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
    
        if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
    
    /**
     * Mid/Side stereo decoding; reference: 4.6.8.1.3.
     */
    static void apply_mid_side_stereo(ChannelElement * cpe) {
        const IndividualChannelStream * ics = &cpe->ch[0].ics;
        float *ch0 = cpe->ch[0].coeffs;
        float *ch1 = cpe->ch[1].coeffs;
        int g, i, k, group, idx = 0;
        const uint16_t * offsets = ics->swb_offset;
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb; i++, idx++) {
                if (cpe->ms_mask[idx] &&
                    cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
                    for (group = 0; group < ics->group_len[g]; group++) {
                        for (k = offsets[i]; k < offsets[i+1]; k++) {
                            float tmp = ch0[group*128 + k] - ch1[group*128 + k];
                            ch0[group*128 + k] += ch1[group*128 + k];
                            ch1[group*128 + k] = tmp;
                        }
                    }
                }
            }
            ch0 += ics->group_len[g]*128;
            ch1 += ics->group_len[g]*128;
        }
    }
    
    /**
     * intensity stereo decoding; reference: 4.6.8.2.3
     *
     * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
     *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
     *                      [3] reserved for scalable AAC
     */
    static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
        const IndividualChannelStream * ics = &cpe->ch[1].ics;
        SingleChannelElement * sce1 = &cpe->ch[1];
        float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
        const uint16_t * offsets = ics->swb_offset;
        int g, group, i, k, idx = 0;
        int c;
        float scale;
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb;) {
                if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                    const int bt_run_end = sce1->band_type_run_end[idx];
                    for (; i < bt_run_end; i++, idx++) {
                        c = -1 + 2 * (sce1->band_type[idx] - 14);
                        if (ms_present)
                            c *= 1 - 2 * cpe->ms_mask[idx];
                        scale = c * sce1->sf[idx];
                        for (group = 0; group < ics->group_len[g]; group++)
                            for (k = offsets[i]; k < offsets[i+1]; k++)
                                coef1[group*128 + k] = scale * coef0[group*128 + k];
                    }
                } else {
                    int bt_run_end = sce1->band_type_run_end[idx];
                    idx += bt_run_end - i;
                    i    = bt_run_end;
                }
            }
            coef0 += ics->group_len[g]*128;
            coef1 += ics->group_len[g]*128;
        }
    }
    
    
    /**
     * Decode a channel_pair_element; reference: table 4.4.
     *
     * @param   elem_id Identifies the instance of a syntax element.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    
    static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) {
    
        int i, ret, common_window, ms_present = 0;
    
        common_window = get_bits1(gb);
        if (common_window) {
            if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
                return -1;
            i = cpe->ch[1].ics.use_kb_window[0];
            cpe->ch[1].ics = cpe->ch[0].ics;
            cpe->ch[1].ics.use_kb_window[1] = i;
            ms_present = get_bits(gb, 2);
            if(ms_present == 3) {
                av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
                return -1;
            } else if(ms_present)
                decode_mid_side_stereo(cpe, gb, ms_present);
        }
        if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
            return ret;
        if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
            return ret;
    
    
        if (common_window) {
            if (ms_present)
    
                apply_mid_side_stereo(cpe);
    
            if (ac->m4ac.object_type == AOT_AAC_MAIN) {
                apply_prediction(ac, &cpe->ch[0]);
                apply_prediction(ac, &cpe->ch[1]);
            }
        }
    
        apply_intensity_stereo(cpe, ms_present);
    
    /**
     * Decode coupling_channel_element; reference: table 4.8.
     *
     * @param   elem_id Identifies the instance of a syntax element.
     *
     * @return  Returns error status. 0 - OK, !0 - error
     */
    static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
        int num_gain = 0;
    
        int sign;
        float scale;
        SingleChannelElement * sce = &che->ch[0];
        ChannelCoupling * coup     = &che->coup;
    
    
        coup->coupling_point = 2*get_bits1(gb);
        coup->num_coupled = get_bits(gb, 3);
        for (c = 0; c <= coup->num_coupled; c++) {
            num_gain++;
            coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
            coup->id_select[c] = get_bits(gb, 4);
            if (coup->type[c] == TYPE_CPE) {
                coup->ch_select[c] = get_bits(gb, 2);
                if (coup->ch_select[c] == 3)
                    num_gain++;
            } else
    
        coup->coupling_point += get_bits1(gb) || (coup->coupling_point>>1);
    
    
        sign = get_bits(gb, 1);
    
        scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
    
    
        if ((ret = decode_ics(ac, sce, gb, 0, 0)))
            return ret;
    
        for (c = 0; c < num_gain; c++) {
    
            int cge = 1;
            int gain = 0;
            float gain_cache = 1.;
            if (c) {
                cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
                gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
    
            if (coup->coupling_point == AFTER_IMDCT) {
                coup->gain[c][0] = gain_cache;
            } else {
    
                for (g = 0; g < sce->ics.num_window_groups; g++) {
                    for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
                        if (sce->band_type[idx] != ZERO_BT) {
                            if (!cge) {
                                int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                                    if (t) {
                                    int s = 1;
                                    t = gain += t;
                                    if (sign) {
                                        s  -= 2 * (t & 0x1);
                                        t >>= 1;
                                    }
                                    gain_cache = pow(scale, -t) * s;
    
                            coup->gain[c][idx] = gain_cache;
    
    /**
     * Decode Spectral Band Replication extension data; reference: table 4.55.
    
     *
     * @param   crc flag indicating the presence of CRC checksum
     * @param   cnt length of TYPE_FIL syntactic element in bytes
    
     * @return  Returns number of bytes consumed from the TYPE_FIL element.
     */
    static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
        // TODO : sbr_extension implementation
    
        av_log_missing_feature(ac->avccontext, "SBR", 0);
    
        skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
        return cnt;
    }
    
    
    /**
     * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
     *
     * @return  Returns number of bytes consumed.
     */
    static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
        int i;
        int num_excl_chan = 0;
    
        do {
            for (i = 0; i < 7; i++)
                che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
        } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
    
        return num_excl_chan / 7;
    }
    
    
    /**
     * Decode dynamic range information; reference: table 4.52.
     *
     * @param   cnt length of TYPE_FIL syntactic element in bytes
     *
     * @return  Returns number of bytes consumed.
     */
    static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
        int n = 1;
        int drc_num_bands = 1;
        int i;
    
        /* pce_tag_present? */
        if(get_bits1(gb)) {
            che_drc->pce_instance_tag  = get_bits(gb, 4);
            skip_bits(gb, 4); // tag_reserved_bits
            n++;
        }
    
        /* excluded_chns_present? */
        if(get_bits1(gb)) {
            n += decode_drc_channel_exclusions(che_drc, gb);
        }
    
        /* drc_bands_present? */
        if (get_bits1(gb)) {
            che_drc->band_incr            = get_bits(gb, 4);
            che_drc->interpolation_scheme = get_bits(gb, 4);
            n++;
            drc_num_bands += che_drc->band_incr;
            for (i = 0; i < drc_num_bands; i++) {
                che_drc->band_top[i] = get_bits(gb, 8);
                n++;
            }
        }
    
        /* prog_ref_level_present? */
        if (get_bits1(gb)) {
            che_drc->prog_ref_level = get_bits(gb, 7);
            skip_bits1(gb); // prog_ref_level_reserved_bits
            n++;
        }
    
        for (i = 0; i < drc_num_bands; i++) {
            che_drc->dyn_rng_sgn[i] = get_bits1(gb);
            che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
            n++;
        }
    
        return n;
    }
    
    /**
     * Decode extension data (incomplete); reference: table 4.51.
     *
     * @param   cnt length of TYPE_FIL syntactic element in bytes
     *
     * @return Returns number of bytes consumed
     */
    static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
    
        int crc_flag = 0;
        int res = cnt;
        switch (get_bits(gb, 4)) { // extension type
            case EXT_SBR_DATA_CRC:
                crc_flag++;
            case EXT_SBR_DATA:
                res = decode_sbr_extension(ac, gb, crc_flag, cnt);
                break;
            case EXT_DYNAMIC_RANGE:
                res = decode_dynamic_range(&ac->che_drc, gb, cnt);
                break;
            case EXT_FILL:
            case EXT_FILL_DATA:
            case EXT_DATA_ELEMENT:
            default:
                skip_bits_long(gb, 8*cnt - 4);
                break;
        };
        return res;
    }
    
    
    /**
     * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
     *
     * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
     * @param   coef    spectral coefficients
     */
    static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
        const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
    
    Robert Swain's avatar
    Robert Swain committed
        int w, filt, m, i;
    
        int bottom, top, order, start, end, size, inc;
        float lpc[TNS_MAX_ORDER];
    
        for (w = 0; w < ics->num_windows; w++) {
            bottom = ics->num_swb;
            for (filt = 0; filt < tns->n_filt[w]; filt++) {
                top    = bottom;
                bottom = FFMAX(0, top - tns->length[w][filt]);
                order  = tns->order[w][filt];
                if (order == 0)
                    continue;
    
    
                // tns_decode_coef
                compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
    
                start = ics->swb_offset[FFMIN(bottom, mmm)];
                end   = ics->swb_offset[FFMIN(   top, mmm)];
                if ((size = end - start) <= 0)
                    continue;
                if (tns->direction[w][filt]) {
                    inc = -1; start = end - 1;
                } else {
                    inc = 1;
                }
                start += w * 128;
    
                // ar filter
                for (m = 0; m < size; m++, start += inc)
                    for (i = 1; i <= FFMIN(m, order); i++)
    
                        coef[start] -= coef[start - i*inc] * lpc[i-1];
    
    /**
     * Conduct IMDCT and windowing.
     */
    static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
        IndividualChannelStream * ics = &sce->ics;
        float * in = sce->coeffs;
        float * out = sce->ret;
        float * saved = sce->saved;
    
        const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
        const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
        const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
    
        float * buf = ac->buf_mdct;
    
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
                av_log(ac->avccontext, AV_LOG_WARNING,
                       "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
                       "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
    
            for (i = 0; i < 1024; i += 128)
                ff_imdct_half(&ac->mdct_small, buf + i, in + i);
    
    
        /* window overlapping
         * NOTE: To simplify the overlapping code, all 'meaningless' short to long
         * and long to short transitions are considered to be short to short
         * transitions. This leaves just two cases (long to long and short to short)
         * with a little special sauce for EIGHT_SHORT_SEQUENCE.
         */
        if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
            (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
    
            ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
    
            for (i = 0; i < 448; i++)
                out[i] = saved[i] + ac->add_bias;
    
            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
    
                ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
                ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
                ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
                ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
                ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
                memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
    
                ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
    
                for (i = 576; i < 1024; i++)
    
        // buffer update
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
    
            for (i = 0; i < 64; i++)
                saved[i] = temp[64 + i] - ac->add_bias;
            ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
            ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
            ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
            memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    
        } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
    
            memcpy(                    saved,       buf + 512,        448 * sizeof(float));
            memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    
            memcpy(                    saved,       buf + 512,        512 * sizeof(float));
    
    /**
     * Apply dependent channel coupling (applied before IMDCT).
     *
     * @param   index   index into coupling gain array
     */
    
    static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
        IndividualChannelStream * ics = &cce->ch[0].ics;
    
        const uint16_t * offsets = ics->swb_offset;
    
        float * dest = target->coeffs;
        const float * src = cce->ch[0].coeffs;
    
        int g, i, group, k, idx = 0;
        if(ac->m4ac.object_type == AOT_AAC_LTP) {
            av_log(ac->avccontext, AV_LOG_ERROR,
                   "Dependent coupling is not supported together with LTP\n");
            return;
        }
        for (g = 0; g < ics->num_window_groups; g++) {
            for (i = 0; i < ics->max_sfb; i++, idx++) {
    
                if (cce->ch[0].band_type[idx] != ZERO_BT) {
    
                    const float gain = cce->coup.gain[index][idx];
    
                    for (group = 0; group < ics->group_len[g]; group++) {
                        for (k = offsets[i]; k < offsets[i+1]; k++) {
                            // XXX dsputil-ize
    
                            dest[group*128+k] += gain * src[group*128+k];
    
                        }
                    }
                }
            }
            dest += ics->group_len[g]*128;
            src  += ics->group_len[g]*128;
        }
    }
    
    /**
     * Apply independent channel coupling (applied after IMDCT).
     *
     * @param   index   index into coupling gain array
     */
    
    static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
    
        const float gain = cce->coup.gain[index][0];
        const float bias = ac->add_bias;
        const float* src = cce->ch[0].ret;
        float* dest = target->ret;
    
    
    /**
     * channel coupling transformation interface
     *
     * @param   index   index into coupling gain array
     * @param   apply_coupling_method   pointer to (in)dependent coupling function
     */
    static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
    
            enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
    
            void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
    
        int i, c;
    
        for (i = 0; i < MAX_ELEM_ID; i++) {
            ChannelElement *cce = ac->che[TYPE_CCE][i];
            int index = 0;
    
            if (cce && cce->coup.coupling_point == coupling_point) {
                ChannelCoupling * coup = &cce->coup;
    
                for (c = 0; c <= coup->num_coupled; c++) {
                    if (coup->type[c] == type && coup->id_select[c] == elem_id) {
                        if (coup->ch_select[c] != 1) {
                            apply_coupling_method(ac, &cc->ch[0], cce, index);
                            if (coup->ch_select[c] != 0)
                                index++;
                        }
                        if (coup->ch_select[c] != 2)
                            apply_coupling_method(ac, &cc->ch[1], cce, index++);
                    } else
                        index += 1 + (coup->ch_select[c] == 3);
    
                }
            }
        }
    }
    
    /**
     * Convert spectral data to float samples, applying all supported tools as appropriate.
     */
    static void spectral_to_sample(AACContext * ac) {
    
        for(type = 3; type >= 0; type--) {
            for (i = 0; i < MAX_ELEM_ID; i++) {
    
                ChannelElement *che = ac->che[type][i];
                if(che) {
    
                    if(type <= TYPE_CPE)
                        apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
    
                    if(che->ch[0].tns.present)
                        apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
                    if(che->ch[1].tns.present)
                        apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
    
                    if(type <= TYPE_CPE)
                        apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
                    if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
                        imdct_and_windowing(ac, &che->ch[0]);
    
                    if(type == TYPE_CPE)
                        imdct_and_windowing(ac, &che->ch[1]);
    
                    if(type <= TYPE_CCE)
                        apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
    
    static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {
    
        int size;
        AACADTSHeaderInfo hdr_info;
    
        size = ff_aac_parse_header(gb, &hdr_info);
        if (size > 0) {
            if (hdr_info.chan_config)
                ac->m4ac.chan_config = hdr_info.chan_config;
            ac->m4ac.sample_rate     = hdr_info.sample_rate;
            ac->m4ac.sampling_index  = hdr_info.sampling_index;
            ac->m4ac.object_type     = hdr_info.object_type;
    
            if (hdr_info.num_aac_frames == 1) {
                if (!hdr_info.crc_absent)
                    skip_bits(gb, 16);
            } else {
    
                av_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
    
                return -1;
            }
    
    static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, AVPacket *avpkt) {
        const uint8_t *buf = avpkt->data;
        int buf_size = avpkt->size;
    
        AACContext * ac = avccontext->priv_data;
    
        ChannelElement * che = NULL;
    
        GetBitContext gb;
        enum RawDataBlockType elem_type;
        int err, elem_id, data_size_tmp;
    
        init_get_bits(&gb, buf, buf_size*8);
    
    
            if (parse_adts_frame_header(ac, &gb) < 0) {
    
                av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
                return -1;
            }
    
            if (ac->m4ac.sampling_index > 12) {
    
                av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
                return -1;
            }
    
        // parse
        while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
            elem_id = get_bits(&gb, 4);
    
    
            if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
    
                av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
                return -1;
    
            }
    
            switch (elem_type) {
    
            case TYPE_SCE:
    
                err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
    
                err = decode_cpe(ac, &gb, che);
    
                err = decode_cce(ac, &gb, che);
    
                err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
    
                break;
    
            case TYPE_DSE:
                skip_data_stream_element(&gb);
                err = 0;
                break;
    
            case TYPE_PCE:
            {
                enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
                memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
                if((err = decode_pce(ac, new_che_pos, &gb)))
                    break;
    
                err = output_configure(ac, ac->che_pos, new_che_pos, 0);
    
                break;
            }
    
            case TYPE_FIL:
                if (elem_id == 15)
                    elem_id += get_bits(&gb, 8) - 1;
                while (elem_id > 0)
                    elem_id -= decode_extension_payload(ac, &gb, elem_id);
                err = 0; /* FIXME */
                break;
    
            default:
                err = -1; /* should not happen, but keeps compiler happy */
                break;
            }
    
            if(err)
                return err;
        }
    
        spectral_to_sample(ac);
    
    
        if (!ac->is_saved) {
            ac->is_saved = 1;
            *data_size = 0;
    
        }
    
        data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
        if(*data_size < data_size_tmp) {
            av_log(avccontext, AV_LOG_ERROR,
                   "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
                   *data_size, data_size_tmp);
            return -1;
        }
        *data_size = data_size_tmp;
    
        ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
    
        return buf_size;
    }
    
    
    static av_cold int aac_decode_close(AVCodecContext * avccontext) {
        AACContext * ac = avccontext->priv_data;
    
            for(type = 0; type < 4; type++)
                av_freep(&ac->che[type][i]);
    
        }
    
        ff_mdct_end(&ac->mdct);
        ff_mdct_end(&ac->mdct_small);
        return 0 ;
    }
    
    AVCodec aac_decoder = {
        "aac",
        CODEC_TYPE_AUDIO,
        CODEC_ID_AAC,
        sizeof(AACContext),
        aac_decode_init,
        NULL,
        aac_decode_close,
        aac_decode_frame,
        .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
    
        .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},