Skip to content
Snippets Groups Projects
mjpeg.c 39.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * MJPEG encoder and decoder
    
     * Copyright (c) 2000, 2001 Fabrice Bellard.
    
     * This library is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
    
     * This library is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
    
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
    
     * You should have received a copy of the GNU Lesser General Public
     * License along with this library; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    
     * Support for external huffman table and various fixes (AVID workaround) by
    
    Fabrice Bellard's avatar
    Fabrice Bellard committed
    //#define DEBUG
    
    #include "avcodec.h"
    #include "dsputil.h"
    #include "mpegvideo.h"
    
    
    #ifdef USE_FASTMEMCPY
    #include "fastmemcpy.h"
    #endif
    
    
    /* use two quantizer table (one for luminance and one for chrominance) */
    /* not yet working */
    #undef TWOMATRIXES
    
    
    typedef struct MJpegContext {
        UINT8 huff_size_dc_luminance[12];
        UINT16 huff_code_dc_luminance[12];
        UINT8 huff_size_dc_chrominance[12];
        UINT16 huff_code_dc_chrominance[12];
    
        UINT8 huff_size_ac_luminance[256];
        UINT16 huff_code_ac_luminance[256];
        UINT8 huff_size_ac_chrominance[256];
        UINT16 huff_code_ac_chrominance[256];
    } MJpegContext;
    
    
    /* JPEG marker codes */
    typedef enum {
        /* start of frame */
        SOF0  = 0xc0,	/* baseline */
        SOF1  = 0xc1,	/* extended sequential, huffman */
        SOF2  = 0xc2,	/* progressive, huffman */
        SOF3  = 0xc3,	/* lossless, huffman */
    
        SOF5  = 0xc5,	/* differential sequential, huffman */
        SOF6  = 0xc6,	/* differential progressive, huffman */
        SOF7  = 0xc7,	/* differential lossless, huffman */
        JPG   = 0xc8,	/* reserved for JPEG extension */
        SOF9  = 0xc9,	/* extended sequential, arithmetic */
        SOF10 = 0xca,	/* progressive, arithmetic */
        SOF11 = 0xcb,	/* lossless, arithmetic */
    
        SOF13 = 0xcd,	/* differential sequential, arithmetic */
        SOF14 = 0xce,	/* differential progressive, arithmetic */
        SOF15 = 0xcf,	/* differential lossless, arithmetic */
    
        DHT   = 0xc4,	/* define huffman tables */
    
        DAC   = 0xcc,	/* define arithmetic-coding conditioning */
    
        /* restart with modulo 8 count "m" */
        RST0  = 0xd0,
        RST1  = 0xd1,
        RST2  = 0xd2,
        RST3  = 0xd3,
        RST4  = 0xd4,
        RST5  = 0xd5,
        RST6  = 0xd6,
        RST7  = 0xd7,
    
        SOI   = 0xd8,	/* start of image */
        EOI   = 0xd9,	/* end of image */
        SOS   = 0xda,	/* start of scan */
        DQT   = 0xdb,	/* define quantization tables */
        DNL   = 0xdc,	/* define number of lines */
        DRI   = 0xdd,	/* define restart interval */
        DHP   = 0xde,	/* define hierarchical progression */
        EXP   = 0xdf,	/* expand reference components */
    
        APP0  = 0xe0,
        APP1  = 0xe1,
        APP2  = 0xe2,
        APP3  = 0xe3,
        APP4  = 0xe4,
        APP5  = 0xe5,
        APP6  = 0xe6,
        APP7  = 0xe7,
        APP8  = 0xe8,
        APP9  = 0xe9,
        APP10 = 0xea,
        APP11 = 0xeb,
        APP12 = 0xec,
        APP13 = 0xed,
        APP14 = 0xee,
        APP15 = 0xef,
    
        JPG0  = 0xf0,
        JPG1  = 0xf1,
        JPG2  = 0xf2,
        JPG3  = 0xf3,
        JPG4  = 0xf4,
        JPG5  = 0xf5,
        JPG6  = 0xf6,
        JPG7  = 0xf7,
        JPG8  = 0xf8,
        JPG9  = 0xf9,
        JPG10 = 0xfa,
        JPG11 = 0xfb,
        JPG12 = 0xfc,
        JPG13 = 0xfd,
    
        COM   = 0xfe,	/* comment */
    
        TEM   = 0x01,	/* temporary private use for arithmetic coding */
    
        /* 0x02 -> 0xbf reserved */
    } JPEG_MARKER;
    
    
    #if 0
    /* These are the sample quantization tables given in JPEG spec section K.1.
     * The spec says that the values given produce "good" quality, and
     * when divided by 2, "very good" quality.
     */
    static const unsigned char std_luminance_quant_tbl[64] = {
        16,  11,  10,  16,  24,  40,  51,  61,
        12,  12,  14,  19,  26,  58,  60,  55,
        14,  13,  16,  24,  40,  57,  69,  56,
        14,  17,  22,  29,  51,  87,  80,  62,
        18,  22,  37,  56,  68, 109, 103,  77,
        24,  35,  55,  64,  81, 104, 113,  92,
        49,  64,  78,  87, 103, 121, 120, 101,
        72,  92,  95,  98, 112, 100, 103,  99
    };
    static const unsigned char std_chrominance_quant_tbl[64] = {
        17,  18,  24,  47,  99,  99,  99,  99,
        18,  21,  26,  66,  99,  99,  99,  99,
        24,  26,  56,  99,  99,  99,  99,  99,
        47,  66,  99,  99,  99,  99,  99,  99,
        99,  99,  99,  99,  99,  99,  99,  99,
        99,  99,  99,  99,  99,  99,  99,  99,
        99,  99,  99,  99,  99,  99,  99,  99,
        99,  99,  99,  99,  99,  99,  99,  99
    };
    #endif
    
    /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
    /* IMPORTANT: these are only valid for 8-bit data precision! */
    static const UINT8 bits_dc_luminance[17] =
    { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
    static const UINT8 val_dc_luminance[] =
    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
    
    static const UINT8 bits_dc_chrominance[17] =
    { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
    static const UINT8 val_dc_chrominance[] =
    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
    
    static const UINT8 bits_ac_luminance[17] =
    { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
    static const UINT8 val_ac_luminance[] =
    { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
      0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
      0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
      0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
      0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
      0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
      0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
      0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
      0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
      0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
      0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
      0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
      0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
      0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
      0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
      0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
      0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
      0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
      0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
      0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
      0xf9, 0xfa 
    };
    
    static const UINT8 bits_ac_chrominance[17] =
    { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
    
    static const UINT8 val_ac_chrominance[] =
    { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
      0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
      0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
      0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
      0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
      0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
      0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
      0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
      0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
      0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
      0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
      0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
      0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
      0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
      0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
      0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
      0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
      0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
      0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
      0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
      0xf9, 0xfa 
    };
    
    /* isn't this function nicer than the one in the libjpeg ? */
    static void build_huffman_codes(UINT8 *huff_size, UINT16 *huff_code,
                                    const UINT8 *bits_table, const UINT8 *val_table)
    {
        int i, j, k,nb, code, sym;
    
        code = 0;
        k = 0;
        for(i=1;i<=16;i++) {
            nb = bits_table[i];
            for(j=0;j<nb;j++) {
                sym = val_table[k++];
                huff_size[sym] = i;
                huff_code[sym] = code;
                code++;
            }
            code <<= 1;
        }
    }
    
    int mjpeg_init(MpegEncContext *s)
    {
        MJpegContext *m;
        
    
        m = av_malloc(sizeof(MJpegContext));
    
        
        s->min_qcoeff=-1023;
        s->max_qcoeff= 1023;
    
        s->intra_quant_bias= 1<<(QUANT_BIAS_SHIFT-1); //(a + x/2)/x
    
    
        /* build all the huffman tables */
        build_huffman_codes(m->huff_size_dc_luminance,
                            m->huff_code_dc_luminance,
                            bits_dc_luminance,
                            val_dc_luminance);
        build_huffman_codes(m->huff_size_dc_chrominance,
                            m->huff_code_dc_chrominance,
                            bits_dc_chrominance,
                            val_dc_chrominance);
        build_huffman_codes(m->huff_size_ac_luminance,
                            m->huff_code_ac_luminance,
                            bits_ac_luminance,
                            val_ac_luminance);
        build_huffman_codes(m->huff_size_ac_chrominance,
                            m->huff_code_ac_chrominance,
                            bits_ac_chrominance,
                            val_ac_chrominance);
        
        s->mjpeg_ctx = m;
        return 0;
    }
    
    void mjpeg_close(MpegEncContext *s)
    {
    
    }
    
    static inline void put_marker(PutBitContext *p, int code)
    {
        put_bits(p, 8, 0xff);
        put_bits(p, 8, code);
    }
    
    /* table_class: 0 = DC coef, 1 = AC coefs */
    static int put_huffman_table(MpegEncContext *s, int table_class, int table_id,
                                 const UINT8 *bits_table, const UINT8 *value_table)
    {
        PutBitContext *p = &s->pb;
        int n, i;
    
        put_bits(p, 4, table_class);
        put_bits(p, 4, table_id);
    
        n = 0;
        for(i=1;i<=16;i++) {
            n += bits_table[i];
            put_bits(p, 8, bits_table[i]);
        }
    
        for(i=0;i<n;i++)
            put_bits(p, 8, value_table[i]);
    
        return n + 17;
    }
    
    static void jpeg_table_header(MpegEncContext *s)
    {
        PutBitContext *p = &s->pb;
    
        UINT8 *ptr;
    
        /* quant matrixes */
        put_marker(p, DQT);
    
    #ifdef TWOMATRIXES
        put_bits(p, 16, 2 + 2 * (1 + 64));
    #else
    
        put_bits(p, 16, 2 + 1 * (1 + 64));
    
        put_bits(p, 4, 0); /* 8 bit precision */
        put_bits(p, 4, 0); /* table 0 */
        for(i=0;i<64;i++) {
    
            j = zigzag_direct[i];
            put_bits(p, 8, s->intra_matrix[j]);
    
        put_bits(p, 4, 0); /* 8 bit precision */
        put_bits(p, 4, 1); /* table 1 */
        for(i=0;i<64;i++) {
    
            j = zigzag_direct[i];
            put_bits(p, 8, s->chroma_intra_matrix[j]);
    
        }
    #endif
    
        /* huffman table */
        put_marker(p, DHT);
        flush_put_bits(p);
    
        put_bits(p, 16, 0); /* patched later */
        size = 2;
        size += put_huffman_table(s, 0, 0, bits_dc_luminance, val_dc_luminance);
        size += put_huffman_table(s, 0, 1, bits_dc_chrominance, val_dc_chrominance);
        
        size += put_huffman_table(s, 1, 0, bits_ac_luminance, val_ac_luminance);
        size += put_huffman_table(s, 1, 1, bits_ac_chrominance, val_ac_chrominance);
        ptr[0] = size >> 8;
        ptr[1] = size;
    }
    
    
    static void jpeg_put_comments(MpegEncContext *s)
    {
        PutBitContext *p = &s->pb;
        int size;
        UINT8 *ptr;
    
    #if 0
        /* JFIF header */
        put_marker(p, APP0);
        put_bits(p, 16, 16);
        put_string(p, "JFIF"); /* this puts the trailing zero-byte too */
        put_bits(p, 16, 0x101);
        put_bits(p, 8, 0); /* units type: 0 - aspect ratio */
        put_bits(p, 16, 1); /* aspect: 1:1 */
        put_bits(p, 16, 1);
        put_bits(p, 8, 0); /* thumbnail width */
        put_bits(p, 8, 0); /* thumbnail height */
    #endif
    
        /* comment */
        put_marker(p, COM);
        flush_put_bits(p);
        ptr = pbBufPtr(p);
        put_bits(p, 16, 0); /* patched later */
    #define VERSION "FFmpeg" LIBAVCODEC_VERSION "b" LIBAVCODEC_BUILD_STR
        put_string(p, VERSION);
        size = strlen(VERSION)+3;
    #undef VERSION
        ptr[0] = size >> 8;
        ptr[1] = size;
    }
    
    
    void mjpeg_picture_header(MpegEncContext *s)
    {
        put_marker(&s->pb, SOI);
    
    
        if (s->mjpeg_write_tables) jpeg_table_header(s);
    
    
        put_marker(&s->pb, SOF0);
    
        put_bits(&s->pb, 16, 17);
        put_bits(&s->pb, 8, 8); /* 8 bits/component */
        put_bits(&s->pb, 16, s->height);
        put_bits(&s->pb, 16, s->width);
        put_bits(&s->pb, 8, 3); /* 3 components */
        
        /* Y component */
        put_bits(&s->pb, 8, 1); /* component number */
    
        put_bits(&s->pb, 4, s->mjpeg_hsample[0]); /* H factor */
        put_bits(&s->pb, 4, s->mjpeg_vsample[0]); /* V factor */
    
        put_bits(&s->pb, 8, 0); /* select matrix */
        
        /* Cb component */
        put_bits(&s->pb, 8, 2); /* component number */
    
        put_bits(&s->pb, 4, s->mjpeg_hsample[1]); /* H factor */
        put_bits(&s->pb, 4, s->mjpeg_vsample[1]); /* V factor */
    
    #ifdef TWOMATRIXES
        put_bits(&s->pb, 8, 1); /* select matrix */
    #else
    
        put_bits(&s->pb, 8, 0); /* select matrix */
    
    
        /* Cr component */
        put_bits(&s->pb, 8, 3); /* component number */
    
        put_bits(&s->pb, 4, s->mjpeg_hsample[2]); /* H factor */
        put_bits(&s->pb, 4, s->mjpeg_vsample[2]); /* V factor */
    
    #ifdef TWOMATRIXES
        put_bits(&s->pb, 8, 1); /* select matrix */
    #else
    
        put_bits(&s->pb, 8, 0); /* select matrix */
    
    
        /* scan header */
        put_marker(&s->pb, SOS);
        put_bits(&s->pb, 16, 12); /* length */
        put_bits(&s->pb, 8, 3); /* 3 components */
        
        /* Y component */
        put_bits(&s->pb, 8, 1); /* index */
        put_bits(&s->pb, 4, 0); /* DC huffman table index */
        put_bits(&s->pb, 4, 0); /* AC huffman table index */
        
        /* Cb component */
        put_bits(&s->pb, 8, 2); /* index */
        put_bits(&s->pb, 4, 1); /* DC huffman table index */
        put_bits(&s->pb, 4, 1); /* AC huffman table index */
        
        /* Cr component */
        put_bits(&s->pb, 8, 3); /* index */
        put_bits(&s->pb, 4, 1); /* DC huffman table index */
        put_bits(&s->pb, 4, 1); /* AC huffman table index */
    
        put_bits(&s->pb, 8, 0); /* Ss (not used) */
        put_bits(&s->pb, 8, 63); /* Se (not used) */
    
        put_bits(&s->pb, 8, 0); /* Ah/Al (not used) */
    
    }
    
    void mjpeg_picture_trailer(MpegEncContext *s)
    {
        jflush_put_bits(&s->pb);
        put_marker(&s->pb, EOI);
    }
    
    static inline void encode_dc(MpegEncContext *s, int val, 
                                 UINT8 *huff_size, UINT16 *huff_code)
    {
        int mant, nbits;
    
        if (val == 0) {
            jput_bits(&s->pb, huff_size[0], huff_code[0]);
        } else {
            mant = val;
            if (val < 0) {
                val = -val;
                mant--;
            }
            
            /* compute the log (XXX: optimize) */
            nbits = 0;
            while (val != 0) {
                val = val >> 1;
                nbits++;
            }
                
            jput_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
            
            jput_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
        }
    }
    
    static void encode_block(MpegEncContext *s, DCTELEM *block, int n)
    {
        int mant, nbits, code, i, j;
        int component, dc, run, last_index, val;
        MJpegContext *m = s->mjpeg_ctx;
        UINT8 *huff_size_ac;
        UINT16 *huff_code_ac;
        
        /* DC coef */
        component = (n <= 3 ? 0 : n - 4 + 1);
        dc = block[0]; /* overflow is impossible */
        val = dc - s->last_dc[component];
        if (n < 4) {
            encode_dc(s, val, m->huff_size_dc_luminance, m->huff_code_dc_luminance);
            huff_size_ac = m->huff_size_ac_luminance;
            huff_code_ac = m->huff_code_ac_luminance;
        } else {
            encode_dc(s, val, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
            huff_size_ac = m->huff_size_ac_chrominance;
            huff_code_ac = m->huff_code_ac_chrominance;
        }
        s->last_dc[component] = dc;
        
        /* AC coefs */
        
        run = 0;
        last_index = s->block_last_index[n];
        for(i=1;i<=last_index;i++) {
            j = zigzag_direct[i];
            val = block[j];
            if (val == 0) {
                run++;
            } else {
                while (run >= 16) {
                    jput_bits(&s->pb, huff_size_ac[0xf0], huff_code_ac[0xf0]);
                    run -= 16;
                }
                mant = val;
                if (val < 0) {
                    val = -val;
                    mant--;
                }
                
                /* compute the log (XXX: optimize) */
                nbits = 0;
                while (val != 0) {
                    val = val >> 1;
                    nbits++;
                }
                code = (run << 4) | nbits;
    
                jput_bits(&s->pb, huff_size_ac[code], huff_code_ac[code]);
            
                jput_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
                run = 0;
            }
        }
    
        /* output EOB only if not already 64 values */
        if (last_index < 63 || run != 0)
            jput_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
    }
    
    void mjpeg_encode_mb(MpegEncContext *s, 
                         DCTELEM block[6][64])
    {
        int i;
        for(i=0;i<6;i++) {
            encode_block(s, block[i], i);
        }
    }
    
    /******************************************/
    /* decoding */
    
    /* compressed picture size */
    #define PICTURE_BUFFER_SIZE 100000
    
    #define MAX_COMPONENTS 4
    
    typedef struct MJpegDecodeContext {
    
        GetBitContext gb;
        UINT32 header_state;
        int start_code; /* current start code */
        UINT8 *buf_ptr;
        int buffer_size;
        int mpeg_enc_ctx_allocated; /* true if decoding context allocated */
        INT16 quant_matrixes[4][64];
        VLC vlcs[2][4];
    
    
        int org_width, org_height;  /* size given at codec init */
        int first_picture;    /* true if decoding first picture */
        int interlaced;     /* true if interlaced */
        int bottom_field;   /* true if bottom field */
    
    
        int nb_components;
        int component_id[MAX_COMPONENTS];
    
        int h_count[MAX_COMPONENTS]; /* horizontal and vertical count for each component */
        int v_count[MAX_COMPONENTS];
        int h_max, v_max; /* maximum h and v counts */
        int quant_index[4];   /* quant table index for each component */
        int last_dc[MAX_COMPONENTS]; /* last DEQUANTIZED dc (XXX: am I right to do that ?) */
        UINT8 *current_picture[MAX_COMPONENTS]; /* picture structure */
        int linesize[MAX_COMPONENTS];
        DCTELEM block[64] __align8;
        UINT8 buffer[PICTURE_BUFFER_SIZE]; 
    
        int restart_interval;
        int restart_count;
        int interleaved_rows;
    
    #define SKIP_REMAINING(gb, len) { \
        dprintf("reamining %d bytes in marker\n", len); \
        if (len) while (--len) \
    	skip_bits(gb, 8); \
    }
    
    
    Juanjo's avatar
    Juanjo committed
    static int mjpeg_decode_dht(MJpegDecodeContext *s, UINT8 *buf, int buf_size);
    
    
    static void build_vlc(VLC *vlc, const UINT8 *bits_table, const UINT8 *val_table, 
                          int nb_codes)
    {
        UINT8 huff_size[256];
        UINT16 huff_code[256];
    
        memset(huff_size, 0, sizeof(huff_size));
        build_huffman_codes(huff_size, huff_code, bits_table, val_table);
        
        init_vlc(vlc, 9, nb_codes, huff_size, 1, 1, huff_code, 2, 2);
    }
    
    
    static int mjpeg_decode_init(AVCodecContext *avctx)
    {
        MJpegDecodeContext *s = avctx->priv_data;
    
    
        s->header_state = 0;
        s->mpeg_enc_ctx_allocated = 0;
        s->buffer_size = PICTURE_BUFFER_SIZE - 1; /* minus 1 to take into
                                                     account FF 00 case */
        s->start_code = -1;
        s->buf_ptr = s->buffer;
    
        s->first_picture = 1;
        s->org_width = avctx->width;
        s->org_height = avctx->height;
    
    
        build_vlc(&s->vlcs[0][0], bits_dc_luminance, val_dc_luminance, 12);
        build_vlc(&s->vlcs[0][1], bits_dc_chrominance, val_dc_chrominance, 12);
        build_vlc(&s->vlcs[1][0], bits_ac_luminance, val_ac_luminance, 251);
        build_vlc(&s->vlcs[1][1], bits_ac_chrominance, val_ac_chrominance, 251);
    
        
        if (avctx->flags & CODEC_FLAG_EXTERN_HUFF)
        {
    	printf("mjpeg: using external huffman table\n");
    	mjpeg_decode_dht(s, avctx->extradata, avctx->extradata_size);
    	/* should check for error - but dunno */
        }
    
        return 0;
    }
    
    /* quantize tables */
    static int mjpeg_decode_dqt(MJpegDecodeContext *s,
                                UINT8 *buf, int buf_size)
    {
    
        int len, index, i, j;
    
        init_get_bits(&s->gb, buf, buf_size);
    
    
        while (len >= 65) {
            /* only 8 bit precision handled */
            if (get_bits(&s->gb, 4) != 0)
    
            index = get_bits(&s->gb, 4);
            if (index >= 4)
                return -1;
            dprintf("index=%d\n", index);
            /* read quant table */
    
            for(i=0;i<64;i++) {
                j = zigzag_direct[i];
    
    	    s->quant_matrixes[index][j] = get_bits(&s->gb, 8);
    
        return 0;
    }
    
    /* decode huffman tables and build VLC decoders */
    static int mjpeg_decode_dht(MJpegDecodeContext *s,
                                UINT8 *buf, int buf_size)
    {
        int len, index, i, class, n, v, code_max;
        UINT8 bits_table[17];
        UINT8 val_table[256];
        
        init_get_bits(&s->gb, buf, buf_size);
    
        len = get_bits(&s->gb, 16);
        len -= 2;
    
        while (len > 0) {
            if (len < 17)
                return -1;
            class = get_bits(&s->gb, 4);
            if (class >= 2)
                return -1;
            index = get_bits(&s->gb, 4);
            if (index >= 4)
                return -1;
            n = 0;
            for(i=1;i<=16;i++) {
                bits_table[i] = get_bits(&s->gb, 8);
                n += bits_table[i];
            }
            len -= 17;
            if (len < n || n > 256)
                return -1;
    
            code_max = 0;
            for(i=0;i<n;i++) {
                v = get_bits(&s->gb, 8);
                if (v > code_max)
                    code_max = v;
                val_table[i] = v;
            }
            len -= n;
    
            /* build VLC and flush previous vlc if present */
            free_vlc(&s->vlcs[class][index]);
            dprintf("class=%d index=%d nb_codes=%d\n",
                   class, index, code_max + 1);
    
            build_vlc(&s->vlcs[class][index], bits_table, val_table, code_max + 1);
    
        }
        return 0;
    }
    
    static int mjpeg_decode_sof0(MJpegDecodeContext *s,
                                 UINT8 *buf, int buf_size)
    {
    
        int len, nb_components, i, width, height;
    
    
        init_get_bits(&s->gb, buf, buf_size);
    
        /* XXX: verify len field validity */
        len = get_bits(&s->gb, 16);
        /* only 8 bits/component accepted */
        if (get_bits(&s->gb, 8) != 8)
            return -1;
        height = get_bits(&s->gb, 16);
        width = get_bits(&s->gb, 16);
    
        dprintf("sof0: picture: %dx%d\n", width, height);
    
    
        nb_components = get_bits(&s->gb, 8);
        if (nb_components <= 0 ||
            nb_components > MAX_COMPONENTS)
            return -1;
    
        s->nb_components = nb_components;
    
        s->h_max = 1;
        s->v_max = 1;
        for(i=0;i<nb_components;i++) {
            /* component id */
    
            s->component_id[i] = get_bits(&s->gb, 8) - 1;
    
            s->h_count[i] = get_bits(&s->gb, 4);
            s->v_count[i] = get_bits(&s->gb, 4);
            /* compute hmax and vmax (only used in interleaved case) */
            if (s->h_count[i] > s->h_max)
                s->h_max = s->h_count[i];
            if (s->v_count[i] > s->v_max)
                s->v_max = s->v_count[i];
            s->quant_index[i] = get_bits(&s->gb, 8);
            if (s->quant_index[i] >= 4)
                return -1;
    
            dprintf("component %d %d:%d id: %d quant:%d\n", i, s->h_count[i],
    	    s->v_count[i], s->component_id[i], s->quant_index[i]);
    
        }
    
        /* if different size, realloc/alloc picture */
        /* XXX: also check h_count and v_count */
        if (width != s->width || height != s->height) {
    
            for(i=0;i<MAX_COMPONENTS;i++)
                av_freep(&s->current_picture[i]);
    
            s->width = width;
            s->height = height;
    
            /* test interlaced mode */
            if (s->first_picture &&
                s->org_height != 0 &&
                s->height < ((s->org_height * 3) / 4)) {
                s->interlaced = 1;
    
            for(i=0;i<nb_components;i++) {
    
                int w, h;
                w = (s->width  + 8 * s->h_max - 1) / (8 * s->h_max);
                h = (s->height + 8 * s->v_max - 1) / (8 * s->v_max);
                w = w * 8 * s->h_count[i];
                h = h * 8 * s->v_count[i];
    
                if (s->interlaced)
                    w *= 2;
    
                s->linesize[i] = w;
                /* memory test is done in mjpeg_decode_sos() */
                s->current_picture[i] = av_mallocz(w * h);
            }
    
            s->first_picture = 0;
    
        if (len != (8+(3*nb_components)))
        {
    
    	dprintf("decode_sof0: error, len(%d) mismatch\n", len);
    
        return 0;
    }
    
    static inline int decode_dc(MJpegDecodeContext *s, int dc_index)
    {
        int code, diff;
    
    
        code = get_vlc(&s->gb, &s->vlcs[0][dc_index]);
    
    	dprintf("decode_dc: bad vlc: %d:%d (%p)\n", 0, dc_index,
                    &s->vlcs[0][dc_index]);
    
        if (code == 0) {
            diff = 0;
        } else {
            diff = get_bits(&s->gb, code);
            if ((diff & (1 << (code - 1))) == 0) 
                diff = (-1 << code) | (diff + 1);
        }
        return diff;
    }
    
    /* decode block and dequantize */
    static int decode_block(MJpegDecodeContext *s, DCTELEM *block, 
                            int component, int dc_index, int ac_index, int quant_index)
    {
        int nbits, code, i, j, level;
        int run, val;
        VLC *ac_vlc;
        INT16 *quant_matrix;
    
        /* DC coef */
        val = decode_dc(s, dc_index);
        if (val == 0xffff) {
            dprintf("error dc\n");
            return -1;
        }
    
        quant_matrix = s->quant_matrixes[quant_index];
    
        val = val * quant_matrix[0] + s->last_dc[component];
        s->last_dc[component] = val;
        block[0] = val;
        /* AC coefs */
        ac_vlc = &s->vlcs[1][ac_index];
        i = 1;
        for(;;) {
            code = get_vlc(&s->gb, ac_vlc);
            if (code < 0) {
                dprintf("error ac\n");
                return -1;
            }
            /* EOB */
            if (code == 0)
                break;
            if (code == 0xf0) {
                i += 16;
            } else {
                run = code >> 4;
                nbits = code & 0xf;
                level = get_bits(&s->gb, nbits);
                if ((level & (1 << (nbits - 1))) == 0) 
                    level = (-1 << nbits) | (level + 1);
                i += run;
                if (i >= 64) {
                    dprintf("error count: %d\n", i);
                    return -1;
                }
                j = zigzag_direct[i];
                block[j] = level * quant_matrix[j];
                i++;
    
            }
        }
        return 0;
    }
    
    static int mjpeg_decode_sos(MJpegDecodeContext *s,
                                UINT8 *buf, int buf_size)
    {
    
        int len, nb_components, i, j, n, h, v, ret;
    
        int mb_width, mb_height, mb_x, mb_y, vmax, hmax, index, id;
    
        int comp_index[4];
        int dc_index[4];
        int ac_index[4];
        int nb_blocks[4];
        int h_count[4];
        int v_count[4];
        
        init_get_bits(&s->gb, buf, buf_size);
        /* XXX: verify len field validity */
        len = get_bits(&s->gb, 16);
        nb_components = get_bits(&s->gb, 8);
        /* XXX: only interleaved scan accepted */
        if (nb_components != 3)
    
        {
    	dprintf("decode_sos: components(%d) mismatch\n", nb_components);
    
        vmax = 0;
        hmax = 0;
        for(i=0;i<nb_components;i++) {
    
            id = get_bits(&s->gb, 8) - 1;
    
    	dprintf("component: %d\n", id);
    
            /* find component index */
            for(index=0;index<s->nb_components;index++)
                if (id == s->component_id[index])
                    break;
            if (index == s->nb_components)
    
    	    dprintf("decode_sos: index(%d) out of components\n", index);
    
            comp_index[i] = index;
            nb_blocks[i] = s->h_count[index] * s->v_count[index];
            h_count[i] = s->h_count[index];
            v_count[i] = s->v_count[index];
    
            dc_index[i] = get_bits(&s->gb, 4);
            ac_index[i] = get_bits(&s->gb, 4);
    
    
    	if (dc_index[i] < 0 || ac_index[i] < 0 ||
    	    dc_index[i] >= 4 || ac_index[i] >= 4)
    	    goto out_of_range;
    	switch(s->start_code)
    	{
    	    case SOF0:
    		if (dc_index[i] > 1 || ac_index[i] > 1)
    		    goto out_of_range;
    		break;
    	    case SOF1:
    	    case SOF2:
    		if (dc_index[i] > 3 || ac_index[i] > 3)
    		    goto out_of_range;
    		break;
    	    case SOF3:
    		if (dc_index[i] > 3 || ac_index[i] != 0)
    		    goto out_of_range;
    		break;	
    	}
    
        skip_bits(&s->gb, 8); /* Ss */
        skip_bits(&s->gb, 8); /* Se */
        skip_bits(&s->gb, 8); /* Ah and Al (each are 4 bits) */
    
    
        for(i=0;i<nb_components;i++) 
            s->last_dc[i] = 1024;
    
        if (nb_components > 1) {
            /* interleaved stream */
            mb_width = (s->width + s->h_max * 8 - 1) / (s->h_max * 8);
            mb_height = (s->height + s->v_max * 8 - 1) / (s->v_max * 8);
        } else {
            h = s->h_max / s->h_count[comp_index[0]];
            v = s->v_max / s->v_count[comp_index[0]];
            mb_width = (s->width + h * 8 - 1) / (h * 8);
            mb_height = (s->height + v * 8 - 1) / (v * 8);
            nb_blocks[0] = 1;
            h_count[0] = 1;
            v_count[0] = 1;
        }
    
        for(mb_y = 0; mb_y < mb_height; mb_y++) {
            for(mb_x = 0; mb_x < mb_width; mb_x++) {
                for(i=0;i<nb_components;i++) {
                    UINT8 *ptr;
                    int x, y, c;
                    n = nb_blocks[i];
                    c = comp_index[i];
                    h = h_count[i];
                    v = v_count[i];
                    x = 0;
                    y = 0;
    
    		if (s->restart_interval && !s->restart_count)
    		    s->restart_count = s->restart_interval;
    
                    for(j=0;j<n;j++) {
                        memset(s->block, 0, sizeof(s->block));
                        if (decode_block(s, s->block, i, 
                                         dc_index[i], ac_index[i], 
                                         s->quant_index[c]) < 0) {
    
                            dprintf("error y=%d x=%d\n", mb_y, mb_x);
    
    //		    dprintf("mb: %d %d processed\n", mb_y, mb_x);
    
                        ff_idct (s->block);
                        ptr = s->current_picture[c] + 
                            (s->linesize[c] * (v * mb_y + y) * 8) + 
                            (h * mb_x + x) * 8;
    
                        if (s->interlaced && s->bottom_field)
                            ptr += s->linesize[c] >> 1;