Skip to content
Snippets Groups Projects
aacenc_ltp.c 8.28 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * AAC encoder long term prediction extension
    
     * Copyright (C) 2015 Rostislav Pehlivanov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file
    
     * AAC encoder long term prediction extension
    
     * @author Rostislav Pehlivanov ( atomnuker gmail com )
     */
    
    #include "aacenc_ltp.h"
    #include "aacenc_quantization.h"
    #include "aacenc_utils.h"
    
    /**
     * Encode LTP data.
     */
    void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce,
                                int common_window)
    {
        int i;
        IndividualChannelStream *ics = &sce->ics;
        if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present)
            return;
        if (common_window)
            put_bits(&s->pb, 1, 0);
        put_bits(&s->pb, 1, ics->ltp.present);
        if (!ics->ltp.present)
            return;
        put_bits(&s->pb, 11, ics->ltp.lag);
        put_bits(&s->pb, 3,  ics->ltp.coef_idx);
        for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++)
            put_bits(&s->pb, 1, ics->ltp.used[i]);
    }
    
    void ff_aac_ltp_insert_new_frame(AACEncContext *s)
    {
        int i, ch, tag, chans, cur_channel, start_ch = 0;
        ChannelElement *cpe;
        SingleChannelElement *sce;
        for (i = 0; i < s->chan_map[0]; i++) {
            cpe = &s->cpe[i];
            tag      = s->chan_map[i+1];
            chans    = tag == TYPE_CPE ? 2 : 1;
            for (ch = 0; ch < chans; ch++) {
                sce = &cpe->ch[ch];
                cur_channel = start_ch + ch;
                /* New sample + overlap */
                memcpy(&sce->ltp_state[0],    &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0]));
                memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0]));
                memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0]));
    
    static void get_lag(float *buf, const float *new, LongTermPrediction *ltp)
    
        int i, j, lag = 0, max_corr = 0;
        float max_ratio = 0.0f;
    
            float corr, s0 = 0.0f, s1 = 0.0f;
    
            const int start = FFMAX(0, i - 1024);
            for (j = start; j < 2048; j++) {
                const int idx = j - i + 1024;
    
                s0 += new[j]*buf[idx];
                s1 += buf[idx]*buf[idx];
    
            }
            corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f;
            if (corr > max_corr) {
                max_corr = corr;
                lag = i;
    
        ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0);
        ltp->coef_idx = quant_array_idx(max_ratio, ltp_coef, 8);
        ltp->coef = ltp_coef[ltp->coef_idx];
    }
    
    static void generate_samples(float *buf, LongTermPrediction *ltp)
    {
        int i, samples_num = 2048;
        if (!ltp->lag) {
            ltp->present = 0;
    
        } else if (ltp->lag < 1024) {
            samples_num = ltp->lag + 1024;
        }
        for (i = 0; i < samples_num; i++)
            buf[i] = ltp->coef*buf[i + 2048 - ltp->lag];
        memset(&buf[i], 0, (2048 - i)*sizeof(float));
    }
    
    /**
     * Process LTP parameters
     * @see Patent WO2006070265A1
     */
    void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
    {
        float *pred_signal = &sce->ltp_state[0];
        const float *samples = &s->planar_samples[s->cur_channel][1024];
    
        if (s->profile != FF_PROFILE_AAC_LTP)
            return;
    
        /* Calculate lag */
        get_lag(pred_signal, samples, &sce->ics.ltp);
        generate_samples(pred_signal, &sce->ics.ltp);
    
    }
    
    void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
    {
        int sfb, count = 0;
        SingleChannelElement *sce0 = &cpe->ch[0];
        SingleChannelElement *sce1 = &cpe->ch[1];
    
        if (!cpe->common_window ||
            sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
    
            sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            sce0->ics.ltp.present = 0;
    
    
        for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) {
            int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb];
            if (sum != 2) {
                sce0->ics.ltp.used[sfb] = 0;
            } else if (sum == 2) {
                count++;
            }
        }
    
        sce0->ics.ltp.present = !!count;
        sce0->ics.predictor_present = !!count;
    }
    
    /**
     * Mark LTP sfb's
     */
    void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce,
                               int common_window)
    {
        int w, g, w2, i, start = 0, count = 0;
        int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB));
        float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1];
        float *PCD34 = &s->scoefs[128*2];
        const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB);
    
    
        if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            if (sce->ics.ltp.lag) {
    
                memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0]));
    
                memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction));
            }
            return;
        }
    
    
        if (!sce->ics.ltp.lag || s->lambda > 120.0f)
    
            return;
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            start = 0;
            for (g = 0;  g < sce->ics.num_swb; g++) {
                int bits1 = 0, bits2 = 0;
                float dist1 = 0.0f, dist2 = 0.0f;
                if (w*16+g > max_ltp) {
                    start += sce->ics.swb_sizes[g];
                    continue;
                }
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                    int bits_tmp1, bits_tmp2;
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
                    for (i = 0; i < sce->ics.swb_sizes[g]; i++)
                        PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i];
    
                    s->abs_pow34(C34,  &sce->coeffs[start+(w+w2)*128],  sce->ics.swb_sizes[g]);
                    s->abs_pow34(PCD34, PCD, sce->ics.swb_sizes[g]);
    
                    dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g],
                                                sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g],
                                                s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0);
                    dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g],
                                                sce->sf_idx[(w+w2)*16+g],
                                                sce->band_type[(w+w2)*16+g],
                                                s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0);
                    bits1 += bits_tmp1;
                    bits2 += bits_tmp2;
                }
                if (dist2 < dist1 && bits2 < bits1) {
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
                        for (i = 0; i < sce->ics.swb_sizes[g]; i++)
                            sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i];
                    sce->ics.ltp.used[w*16+g] = 1;
                    saved_bits += bits1 - bits2;
                    count++;
                }
                start += sce->ics.swb_sizes[g];
            }
        }
    
        sce->ics.ltp.present = !!count && (saved_bits >= 0);
        sce->ics.predictor_present = !!sce->ics.ltp.present;
    
        /* Reset any marked sfbs */
        if (!sce->ics.ltp.present && !!count) {
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
                start = 0;
                for (g = 0;  g < sce->ics.num_swb; g++) {
                    if (sce->ics.ltp.used[w*16+g]) {
                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                            for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
                                sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i];
                            }
                        }
                    }
                    start += sce->ics.swb_sizes[g];
                }
            }
        }
    }