Skip to content
Snippets Groups Projects
aaccoder.c 57.4 KiB
Newer Older
  • Learn to ignore specific revisions
  •     } else {
            for (w = 0; w < 8; w++) {
    
                const float *coeffs = sce->coeffs + w*128;
    
                curband = start = 0;
    
                for (i = 0; i < 128; i++) {
                    if (i - start >= sce->ics.swb_sizes[curband]) {
    
                        start += sce->ics.swb_sizes[curband];
                        curband++;
                    }
    
                    if (coeffs[i]) {
    
                        avg_energy += coeffs[i] * coeffs[i];
                        last = FFMAX(last, i);
                        lastband = FFMAX(lastband, curband);
                    }
                }
            }
        }
        last++;
        avg_energy /= last;
    
        if (avg_energy == 0.0f) {
            for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0; g < sce->ics.num_swb; g++) {
    
                float *coefs   = sce->coeffs + start;
    
                const int size = sce->ics.swb_sizes[g];
                int start2 = start, end2 = start + size, peakpos = start;
                float maxval = -1, thr = 0.0f, t;
                maxq[w*16+g] = 0.0f;
    
                if (g > lastband) {
    
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
    
                        memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
                    continue;
                }
    
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                    for (i = 0; i < size; i++) {
    
                        float t = coefs[w2*128+i]*coefs[w2*128+i];
    
                        maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
    
                        if (sce->ics.num_windows == 1 && maxval < t) {
    
                if (sce->ics.num_windows == 1) {
    
                    start2 = FFMAX(peakpos - 2, start2);
                    end2   = FFMIN(peakpos + 3, end2);
    
                    start2 -= start;
                    end2   -= start;
                }
                start += size;
                thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
    
                t   = 1.0 - (1.0 * start2 / last);
    
                uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
            }
        }
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
        abs_pow34_v(s->scoefs, sce->coeffs, 1024);
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
    
            for (g = 0;  g < sce->ics.num_swb; g++) {
    
                const float *coefs  = sce->coeffs + start;
                const float *scaled = s->scoefs   + start;
                const int size      = sce->ics.swb_sizes[g];
    
                if (maxq[w*16+g] < 21.544) {
    
                    sce->zeroes[w*16+g] = 1;
                    start += size;
                    continue;
                }
                sce->zeroes[w*16+g] = 0;
    
                scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
    
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                        int b;
                        dist += quantize_band_cost(s, coefs + w2*128,
                                                   scaled + w2*128,
                                                   sce->ics.swb_sizes[g],
                                                   scf,
                                                   ESC_BT,
    
    Alex Converse's avatar
    Alex Converse committed
                                                   lambda,
    
    Alex Converse's avatar
    Alex Converse committed
                    dist *= 1.0f / 512.0f / lambda;
    
                    quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
    
                    if (quant_max >= 8191) { // too much, return to the previous quantizer
    
                        sce->sf_idx[w*16+g] = prev_scf;
                        break;
                    }
                    prev_scf = scf;
                    curdiff = fabsf(dist - uplim[w*16+g]);
    
                    if (dist > uplim[w*16+g])
    
                    scf = av_clip_uint8(scf);
    
                    if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
    
                        sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
    
                }
                start += size;
            }
        }
        minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
    
        for (i = 1; i < 128; i++) {
            if (!sce->sf_idx[i])
    
                sce->sf_idx[i] = sce->sf_idx[i-1];
            else
                minq = FFMIN(minq, sce->sf_idx[i]);
        }
    
        if (minq == INT_MAX)
            minq = 0;
    
        minq = FFMIN(minq, SCALE_MAX_POS);
        maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
    
        for (i = 126; i >= 0; i--) {
            if (!sce->sf_idx[i])
    
                sce->sf_idx[i] = sce->sf_idx[i+1];
            sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
        }
    }
    
    static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
    
                                           SingleChannelElement *sce,
                                           const float lambda)
    
    Mans Rullgard's avatar
    Mans Rullgard committed
        int i, w, w2, g;
    
        int minq = 255;
    
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0; g < sce->ics.num_swb; g++) {
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
    
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
    
                    if (band->energy <= band->threshold) {
    
                        sce->sf_idx[(w+w2)*16+g] = 218;
                        sce->zeroes[(w+w2)*16+g] = 1;
    
                        sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
    
                        sce->zeroes[(w+w2)*16+g] = 0;
                    }
                    minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
                }
            }
        }
    
        for (i = 0; i < 128; i++) {
    
            sce->sf_idx[i] = 140;
            //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
    
        }
        //set the same quantizers inside window groups
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
            for (g = 0;  g < sce->ics.num_swb; g++)
                for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
    
                    sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
    }
    
    
    static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
    
        const float lambda = s->lambda;
    
        const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
        const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/120.f);
        const float thr_mult = NOISE_LAMBDA_NUMERATOR/lambda;
    
        /* Coders !twoloop don't reset the band_types */
        for (w = 0; w < 128; w++)
            if (sce->band_type[w] == NOISE_BT)
                sce->band_type[w] = 0;
    
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            start = 0;
            for (g = 0;  g < sce->ics.num_swb; g++) {
                if (start*freq_mult > NOISE_LOW_LIMIT*(lambda/170.0f)) {
                    float energy = 0.0f, threshold = 0.0f, spread = 0.0f;
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
                        FFPsyBand *band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
                        energy += band->energy;
                        threshold += band->threshold;
                        spread += band->spread;
                    }
                    if (spread > spread_threshold*sce->ics.group_len[w] &&
                        ((sce->zeroes[w*16+g] && energy >= threshold) ||
                        energy < threshold*thr_mult*sce->ics.group_len[w])) {
                        sce->band_type[w*16+g] = NOISE_BT;
                        sce->pns_ener[w*16+g] = energy / sce->ics.group_len[w];
                        sce->zeroes[w*16+g] = 0;
                    }
                }
                start += sce->ics.swb_sizes[g];
            }
        }
    }
    
    
    static void search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
    
    {
        float IS[128];
        float *L34  = s->scoefs + 128*0, *R34  = s->scoefs + 128*1;
        float *I34  = s->scoefs + 128*2;
        SingleChannelElement *sce0 = &cpe->ch[0];
        SingleChannelElement *sce1 = &cpe->ch[1];
        int start = 0, count = 0, i, w, w2, g;
        const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
    
        const float lambda = s->lambda;
    
    
        for (w = 0; w < 128; w++)
            if (sce1->band_type[w] >= INTENSITY_BT2)
                sce1->band_type[w] = 0;
    
        if (!cpe->common_window)
            return;
        for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
            start = 0;
            for (g = 0;  g < sce0->ics.num_swb; g++) {
                if (start*freq_mult > INT_STEREO_LOW_LIMIT*(lambda/170.0f) &&
                    cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
                    cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g]) {
                    int phase = 0;
                    float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
                    float dist1 = 0.0f, dist2 = 0.0f;
                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
                            float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
                            float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
                            phase += coef0*coef1 >= 0.0f ? 1 : -1;
                            ener0 += coef0*coef0;
                            ener1 += coef1*coef1;
                            ener01 += (coef0 + coef1)*(coef0 + coef1);
                        }
                    }
                    if (!phase) { /* Too much phase difference between channels */
                        start += sce0->ics.swb_sizes[g];
                        continue;
                    }
                    phase = av_clip(phase, -1, 1);
                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
                        FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
                        FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
                        int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[(w+w2)*16+g]-4);
                        float e01_34 = phase*pow(sqrt(ener1/ener0), 3.0/4.0);
                        float maxval, dist_spec_err = 0.0f;
                        float minthr = FFMIN(band0->threshold, band1->threshold);
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++)
                            IS[i] = (sce0->pcoeffs[start+(w+w2)*128+i] + phase*sce1->pcoeffs[start+(w+w2)*128+i]) * sqrt(ener0/ener01);
                        abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
                        abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
                        abs_pow34_v(I34, IS,                            sce0->ics.swb_sizes[g]);
                        maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
                        is_band_type = find_min_book(maxval, is_sf_idx);
                        dist1 += quantize_band_cost(s, sce0->coeffs + start + (w+w2)*128,
                                                    L34,
                                                    sce0->ics.swb_sizes[g],
                                                    sce0->sf_idx[(w+w2)*16+g],
                                                    sce0->band_type[(w+w2)*16+g],
    
                                                    lambda / band0->threshold, INFINITY, NULL, 0);
    
                        dist1 += quantize_band_cost(s, sce1->coeffs + start + (w+w2)*128,
                                                    R34,
                                                    sce1->ics.swb_sizes[g],
                                                    sce1->sf_idx[(w+w2)*16+g],
                                                    sce1->band_type[(w+w2)*16+g],
    
                                                    lambda / band1->threshold, INFINITY, NULL, 0);
    
                        dist2 += quantize_band_cost(s, IS,
                                                    I34,
                                                    sce0->ics.swb_sizes[g],
                                                    is_sf_idx,
                                                    is_band_type,
    
                                                    lambda / minthr, INFINITY, NULL, 0);
    
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
                            dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
                            dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
                        }
                        dist_spec_err *= lambda / minthr;
                        dist2 += dist_spec_err;
                    }
                    if (dist2 <= dist1) {
                        cpe->is_mask[w*16+g] = 1;
                        cpe->ms_mask[w*16+g] = 0;
                        cpe->ch[0].is_ener[w*16+g] = sqrt(ener0/ener01);
                        cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
                        if (phase)
                            cpe->ch[1].band_type[w*16+g] = INTENSITY_BT;
                        else
                            cpe->ch[1].band_type[w*16+g] = INTENSITY_BT2;
                        count++;
                    }
                }
                start += sce0->ics.swb_sizes[g];
            }
        }
        cpe->is_mode = !!count;
    }
    
    
    static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
    
    {
        int start = 0, i, w, w2, g;
        float M[128], S[128];
        float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
    
        const float lambda = s->lambda;
    
        SingleChannelElement *sce0 = &cpe->ch[0];
        SingleChannelElement *sce1 = &cpe->ch[1];
    
        if (!cpe->common_window)
    
        for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
    
            start = 0;
    
            for (g = 0;  g < sce0->ics.num_swb; g++) {
    
                if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
    
                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
    
                        FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
                        FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
    
                        float minthr = FFMIN(band0->threshold, band1->threshold);
                        float maxthr = FFMAX(band0->threshold, band1->threshold);
    
                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
    
                            M[i] = (sce0->pcoeffs[start+(w+w2)*128+i]
                                  + sce1->pcoeffs[start+(w+w2)*128+i]) * 0.5;
    
                                  - sce1->pcoeffs[start+(w+w2)*128+i];
    
                        abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
                        abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
    
                        abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
                        abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
    
                        dist1 += quantize_band_cost(s, sce0->coeffs + start + (w+w2)*128,
    
                                                    L34,
                                                    sce0->ics.swb_sizes[g],
                                                    sce0->sf_idx[(w+w2)*16+g],
                                                    sce0->band_type[(w+w2)*16+g],
    
                                                    lambda / band0->threshold, INFINITY, NULL, 0);
    
                        dist1 += quantize_band_cost(s, sce1->coeffs + start + (w+w2)*128,
    
                                                    R34,
                                                    sce1->ics.swb_sizes[g],
                                                    sce1->sf_idx[(w+w2)*16+g],
                                                    sce1->band_type[(w+w2)*16+g],
    
                                                    lambda / band1->threshold, INFINITY, NULL, 0);
    
                        dist2 += quantize_band_cost(s, M,
                                                    M34,
                                                    sce0->ics.swb_sizes[g],
                                                    sce0->sf_idx[(w+w2)*16+g],
                                                    sce0->band_type[(w+w2)*16+g],
    
                                                    lambda / maxthr, INFINITY, NULL, 0);
    
                        dist2 += quantize_band_cost(s, S,
                                                    S34,
                                                    sce1->ics.swb_sizes[g],
                                                    sce1->sf_idx[(w+w2)*16+g],
                                                    sce1->band_type[(w+w2)*16+g],
    
                                                    lambda / minthr, INFINITY, NULL, 0);
    
                    }
                    cpe->ms_mask[w*16+g] = dist2 < dist1;
                }
                start += sce0->ics.swb_sizes[g];
            }
        }
    }
    
    
    AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
    
        [AAC_CODER_FAAC] = {
    
    Alex Converse's avatar
    Alex Converse committed
            encode_window_bands_info,
    
        [AAC_CODER_ANMR] = {
    
            search_for_quantizers_anmr,
            encode_window_bands_info,
            quantize_and_encode_band,
    
        [AAC_CODER_TWOLOOP] = {
    
        [AAC_CODER_FAST] = {
    
            search_for_quantizers_fast,
            encode_window_bands_info,
            quantize_and_encode_band,