Newer
Older
/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define _SVID_SOURCE //needed for MAP_ANONYMOUS
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include "config.h"
#include <assert.h>
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#if HAVE_VIRTUALALLOC
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "swscale.h"
#include "swscale_internal.h"
#include "rgb2rgb.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/x86_cpu.h"
#include "libavutil/avutil.h"
#include "libavutil/bswap.h"
#include "libavutil/pixdesc.h"
unsigned swscale_version(void)
{
return LIBSWSCALE_VERSION_INT;
}
const char *swscale_configuration(void)
{
return FFMPEG_CONFIGURATION;
}
const char *swscale_license(void)
{
#define LICENSE_PREFIX "libswscale license: "
return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
}
#define RET 0xC3 //near return opcode for x86
#define isSupportedIn(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_RGB48BE \
|| (x)==PIX_FMT_RGB48LE \
|| (x)==PIX_FMT_RGB32 \
|| (x)==PIX_FMT_RGB32_1 \
|| (x)==PIX_FMT_BGR24 \
|| (x)==PIX_FMT_BGR565 \
|| (x)==PIX_FMT_BGR555 \
|| (x)==PIX_FMT_BGR32 \
|| (x)==PIX_FMT_BGR32_1 \
|| (x)==PIX_FMT_RGB24 \
|| (x)==PIX_FMT_RGB565 \
|| (x)==PIX_FMT_RGB555 \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_NV12 \
|| (x)==PIX_FMT_NV21 \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| (x)==PIX_FMT_YUVJ420P \
|| (x)==PIX_FMT_YUVJ422P \
|| (x)==PIX_FMT_YUVJ440P \
|| (x)==PIX_FMT_YUVJ444P \
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|| (x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_BGR8 \
|| (x)==PIX_FMT_RGB8 \
|| (x)==PIX_FMT_BGR4_BYTE \
|| (x)==PIX_FMT_RGB4_BYTE \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_MONOWHITE \
|| (x)==PIX_FMT_MONOBLACK \
|| (x)==PIX_FMT_YUV420P16LE \
|| (x)==PIX_FMT_YUV422P16LE \
|| (x)==PIX_FMT_YUV444P16LE \
|| (x)==PIX_FMT_YUV420P16BE \
|| (x)==PIX_FMT_YUV422P16BE \
|| (x)==PIX_FMT_YUV444P16BE \
)
int sws_isSupportedInput(enum PixelFormat pix_fmt)
{
return isSupportedIn(pix_fmt);
}
#define isSupportedOut(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| (x)==PIX_FMT_YUVJ420P \
|| (x)==PIX_FMT_YUVJ422P \
|| (x)==PIX_FMT_YUVJ440P \
|| (x)==PIX_FMT_YUVJ444P \
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|| (x)==PIX_FMT_NV12 \
|| (x)==PIX_FMT_NV21 \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_YUV420P16LE \
|| (x)==PIX_FMT_YUV422P16LE \
|| (x)==PIX_FMT_YUV444P16LE \
|| (x)==PIX_FMT_YUV420P16BE \
|| (x)==PIX_FMT_YUV422P16BE \
|| (x)==PIX_FMT_YUV444P16BE \
)
int sws_isSupportedOutput(enum PixelFormat pix_fmt)
{
return isSupportedOut(pix_fmt);
}
extern const int32_t ff_yuv2rgb_coeffs[8][4];
const char *sws_format_name(enum PixelFormat format)
{
if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
return av_pix_fmt_descriptors[format].name;
else
return "Unknown format";
}
static double getSplineCoeff(double a, double b, double c, double d, double dist)
{
// printf("%f %f %f %f %f\n", a,b,c,d,dist);
if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
else return getSplineCoeff( 0.0,
b+ 2.0*c + 3.0*d,
c + 3.0*d,
-b- 3.0*c - 6.0*d,
dist-1.0);
}
static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
int srcW, int dstW, int filterAlign, int one, int flags,
SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
{
int i;
int filterSize;
int filter2Size;
int minFilterSize;
int64_t *filter=NULL;
int64_t *filter2=NULL;
const int64_t fone= 1LL<<54;
int ret= -1;
#if ARCH_X86
if (flags & SWS_CPU_CAPS_MMX)
__asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
#endif
// NOTE: the +1 is for the MMX scaler which reads over the end
FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
if (FFABS(xInc - 0x10000) <10) { // unscaled
int i;
filterSize= 1;
FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
for (i=0; i<dstW; i++) {
filter[i*filterSize]= fone;
(*filterPos)[i]=i;
}
} else if (flags&SWS_POINT) { // lame looking point sampling mode
int i;
int xDstInSrc;
filterSize= 1;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
(*filterPos)[i]= xx;
filter[i]= fone;
xDstInSrc+= xInc;
}
} else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
int i;
int xDstInSrc;
filterSize= 2;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
int j;
(*filterPos)[i]= xx;
//bilinear upscale / linear interpolate / area averaging
for (j=0; j<filterSize; j++) {
int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
if (coeff<0) coeff=0;
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= xInc;
}
} else {
int xDstInSrc;
int sizeFactor;
if (flags&SWS_BICUBIC) sizeFactor= 4;
else if (flags&SWS_X) sizeFactor= 8;
else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
else if (flags&SWS_BILINEAR) sizeFactor= 2;
else {
sizeFactor= 0; //GCC warning killer
assert(0);
}
if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
if (filterSize > srcW-2) filterSize=srcW-2;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc - 0x10000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
int j;
(*filterPos)[i]= xx;
for (j=0; j<filterSize; j++) {
int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
double floatd;
int64_t coeff;
if (xInc > 1<<16)
d= d*dstW/srcW;
floatd= d * (1.0/(1<<30));
if (flags & SWS_BICUBIC) {
int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
int64_t dd = ( d*d)>>30;
int64_t ddd= (dd*d)>>30;
if (d < 1LL<<30)
coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
else if (d < 1LL<<31)
coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
else
coeff=0.0;
coeff *= fone>>(30+24);
}
/* else if (flags & SWS_X) {
double p= param ? param*0.01 : 0.3;
coeff = d ? sin(d*PI)/(d*PI) : 1.0;
coeff*= pow(2.0, - p*d*d);
}*/
else if (flags & SWS_X) {
double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
double c;
if (floatd<1.0)
c = cos(floatd*M_PI);
else
c=-1.0;
if (c<0.0) c= -pow(-c, A);
else c= pow( c, A);
coeff= (c*0.5 + 0.5)*fone;
} else if (flags & SWS_AREA) {
int64_t d2= d - (1<<29);
if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
else coeff=0.0;
coeff *= fone>>(30+16);
} else if (flags & SWS_GAUSS) {
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (pow(2.0, - p*floatd*floatd))*fone;
} else if (flags & SWS_SINC) {
coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
} else if (flags & SWS_LANCZOS) {
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
if (floatd>p) coeff=0;
} else if (flags & SWS_BILINEAR) {
coeff= (1<<30) - d;
if (coeff<0) coeff=0;
coeff *= fone >> 30;
} else if (flags & SWS_SPLINE) {
double p=-2.196152422706632;
coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
} else {
coeff= 0.0; //GCC warning killer
assert(0);
}
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= 2*xInc;
}
}
/* apply src & dst Filter to filter -> filter2
av_free(filter);
*/
assert(filterSize>0);
filter2Size= filterSize;
if (srcFilter) filter2Size+= srcFilter->length - 1;
if (dstFilter) filter2Size+= dstFilter->length - 1;
assert(filter2Size>0);
FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
for (i=0; i<dstW; i++) {
int j, k;
if(srcFilter) {
for (k=0; k<srcFilter->length; k++) {
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
}
} else {
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + j]= filter[i*filterSize + j];
}
//FIXME dstFilter
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
}
av_freep(&filter);
/* try to reduce the filter-size (step1 find size and shift left) */
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
minFilterSize= 0;
for (i=dstW-1; i>=0; i--) {
int min= filter2Size;
int j;
int64_t cutOff=0.0;
/* get rid of near zero elements on the left by shifting left */
for (j=0; j<filter2Size; j++) {
int k;
cutOff += FFABS(filter2[i*filter2Size]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
/* preserve monotonicity because the core can't handle the filter otherwise */
if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
// move filter coefficients left
for (k=1; k<filter2Size; k++)
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
filter2[i*filter2Size + k - 1]= 0;
(*filterPos)[i]++;
}
cutOff=0;
/* count near zeros on the right */
for (j=filter2Size-1; j>0; j--) {
cutOff += FFABS(filter2[i*filter2Size + j]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
min--;
}
if (min>minFilterSize) minFilterSize= min;
}
if (flags & SWS_CPU_CAPS_ALTIVEC) {
// we can handle the special case 4,
// so we don't want to go to the full 8
if (minFilterSize < 5)
filterAlign = 4;
// We really don't want to waste our time
// doing useless computation, so fall back on
// the scalar C code for very small filters.
// Vectorizing is worth it only if you have a
// decent-sized vector.
if (minFilterSize < 3)
filterAlign = 1;
}
if (flags & SWS_CPU_CAPS_MMX) {
// special case for unscaled vertical filtering
if (minFilterSize == 1 && filterAlign == 2)
filterAlign= 1;
}
assert(minFilterSize > 0);
filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
assert(filterSize > 0);
filter= av_malloc(filterSize*dstW*sizeof(*filter));
if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
goto fail;
*outFilterSize= filterSize;
if (flags&SWS_PRINT_INFO)
av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
/* try to reduce the filter-size (step2 reduce it) */
for (i=0; i<dstW; i++) {
int j;
for (j=0; j<filterSize; j++) {
if (j>=filter2Size) filter[i*filterSize + j]= 0;
else filter[i*filterSize + j]= filter2[i*filter2Size + j];
if((flags & SWS_BITEXACT) && j>=minFilterSize)
filter[i*filterSize + j]= 0;
}
}
//FIXME try to align filterPos if possible
//fix borders
for (i=0; i<dstW; i++) {
int j;
if ((*filterPos)[i] < 0) {
// move filter coefficients left to compensate for filterPos
for (j=1; j<filterSize; j++) {
int left= FFMAX(j + (*filterPos)[i], 0);
filter[i*filterSize + left] += filter[i*filterSize + j];
filter[i*filterSize + j]=0;
}
(*filterPos)[i]= 0;
}
if ((*filterPos)[i] + filterSize > srcW) {
int shift= (*filterPos)[i] + filterSize - srcW;
// move filter coefficients right to compensate for filterPos
for (j=filterSize-2; j>=0; j--) {
int right= FFMIN(j + shift, filterSize-1);
filter[i*filterSize +right] += filter[i*filterSize +j];
filter[i*filterSize +j]=0;
}
(*filterPos)[i]= srcW - filterSize;
}
}
// Note the +1 is for the MMX scaler which reads over the end
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
/* normalize & store in outFilter */
for (i=0; i<dstW; i++) {
int j;
int64_t error=0;
int64_t sum=0;
for (j=0; j<filterSize; j++) {
sum+= filter[i*filterSize + j];
}
sum= (sum + one/2)/ one;
for (j=0; j<*outFilterSize; j++) {
int64_t v= filter[i*filterSize + j] + error;
int intV= ROUNDED_DIV(v, sum);
(*outFilter)[i*(*outFilterSize) + j]= intV;
error= v - intV*sum;
}
}
(*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
for (i=0; i<*outFilterSize; i++) {
int j= dstW*(*outFilterSize);
(*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
}
ret=0;
fail:
av_free(filter);
av_free(filter2);
return ret;
}
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
{
uint8_t *fragmentA;
x86_reg imm8OfPShufW1A;
x86_reg imm8OfPShufW2A;
x86_reg fragmentLengthA;
uint8_t *fragmentB;
x86_reg imm8OfPShufW1B;
x86_reg imm8OfPShufW2B;
x86_reg fragmentLengthB;
int fragmentPos;
int xpos, i;
// create an optimized horizontal scaling routine
/* This scaler is made of runtime-generated MMX2 code using specially
* tuned pshufw instructions. For every four output pixels, if four
* input pixels are enough for the fast bilinear scaling, then a chunk
* of fragmentB is used. If five input pixels are needed, then a chunk
* of fragmentA is used.
*/
//code fragment
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
"=r" (fragmentLengthA)
);
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm0, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
"=r" (fragmentLengthB)
);
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
fragmentPos=0;
for (i=0; i<dstW/numSplits; i++) {
int xx=xpos>>16;
if ((i&3) == 0) {
int a=0;
int b=((xpos+xInc)>>16) - xx;
int c=((xpos+xInc*2)>>16) - xx;
int d=((xpos+xInc*3)>>16) - xx;
int inc = (d+1<4);
uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
int maxShift= 3-(d+inc);
int shift=0;
if (filterCode) {
filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
filterPos[i/2]= xx;
memcpy(filterCode + fragmentPos, fragment, fragmentLength);
filterCode[fragmentPos + imm8OfPShufW1]=
(a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
filterCode[fragmentPos + imm8OfPShufW2]=
a | (b<<2) | (c<<4) | (d<<6);
if (i+4-inc>=dstW) shift=maxShift; //avoid overread
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
if (shift && i>=shift) {
filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
filterPos[i/2]-=shift;
}
}
fragmentPos+= fragmentLength;
if (filterCode)
filterCode[fragmentPos]= RET;
}
xpos+=xInc;
}
if (filterCode)
filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
return fragmentPos + 1;
}
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
{
*h = av_pix_fmt_descriptors[format].log2_chroma_w;
*v = av_pix_fmt_descriptors[format].log2_chroma_h;
}
static uint16_t roundToInt16(int64_t f)
{
int r= (f + (1<<15))>>16;
if (r<-0x7FFF) return 0x8000;
else if (r> 0x7FFF) return 0x7FFF;
else return r;
}
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
{
int64_t crv = inv_table[0];
int64_t cbu = inv_table[1];
int64_t cgu = -inv_table[2];
int64_t cgv = -inv_table[3];
int64_t cy = 1<<16;
int64_t oy = 0;
memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
c->brightness= brightness;
c->contrast = contrast;
c->saturation= saturation;
c->srcRange = srcRange;
c->dstRange = dstRange;
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
c->uOffset= 0x0400040004000400LL;
c->vOffset= 0x0400040004000400LL;
if (!srcRange) {
cy= (cy*255) / 219;
oy= 16<<16;
} else {
crv= (crv*224) / 255;
cbu= (cbu*224) / 255;
cgu= (cgu*224) / 255;
cgv= (cgv*224) / 255;
}
cy = (cy *contrast )>>16;
crv= (crv*contrast * saturation)>>32;
cbu= (cbu*contrast * saturation)>>32;
cgu= (cgu*contrast * saturation)>>32;
cgv= (cgv*contrast * saturation)>>32;
oy -= 256*brightness;
c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
//FIXME factorize
#if HAVE_ALTIVEC
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
if (c->flags & SWS_CPU_CAPS_ALTIVEC)
ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
#endif
return 0;
}
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
{
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
*inv_table = c->srcColorspaceTable;
*table = c->dstColorspaceTable;
*srcRange = c->srcRange;
*dstRange = c->dstRange;
*brightness= c->brightness;
*contrast = c->contrast;
*saturation= c->saturation;
return 0;
}
static int handle_jpeg(enum PixelFormat *format)
{
switch (*format) {
case PIX_FMT_YUVJ420P:
*format = PIX_FMT_YUV420P;
return 1;
case PIX_FMT_YUVJ422P:
*format = PIX_FMT_YUV422P;
return 1;
case PIX_FMT_YUVJ444P:
*format = PIX_FMT_YUV444P;
return 1;
case PIX_FMT_YUVJ440P:
*format = PIX_FMT_YUV440P;
return 1;
default:
return 0;
}
}
SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
{
SwsContext *c;
int i;
int usesVFilter, usesHFilter;
int unscaled;
int srcRange, dstRange;
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
#if ARCH_X86
if (flags & SWS_CPU_CAPS_MMX)
__asm__ volatile("emms\n\t"::: "memory");
#endif
#if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
flags |= ff_hardcodedcpuflags();
#endif /* CONFIG_RUNTIME_CPUDETECT */
if (!rgb15to16) sws_rgb2rgb_init(flags);
unscaled = (srcW == dstW && srcH == dstH);
srcRange = handle_jpeg(&srcFormat);
dstRange = handle_jpeg(&dstFormat);
if (!isSupportedIn(srcFormat)) {
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
return NULL;
}
if (!isSupportedOut(dstFormat)) {
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
return NULL;
}
i= flags & ( SWS_POINT
|SWS_AREA
|SWS_BILINEAR
|SWS_FAST_BILINEAR
|SWS_BICUBIC
|SWS_X
|SWS_GAUSS
|SWS_LANCZOS
|SWS_SINC
|SWS_SPLINE
|SWS_BICUBLIN);
if(!i || (i & (i-1))) {
av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
return NULL;
}
/* sanity check */
if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
srcW, srcH, dstW, dstH);
return NULL;
}
if(srcW > VOFW || dstW > VOFW) {
av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
return NULL;
}
if (!dstFilter) dstFilter= &dummyFilter;
if (!srcFilter) srcFilter= &dummyFilter;
FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
c->av_class = &sws_context_class;
c->srcW= srcW;
c->srcH= srcH;
c->dstW= dstW;
c->dstH= dstH;
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
c->flags= flags;
c->dstFormat= dstFormat;
c->srcFormat= srcFormat;
c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
c->vRounder= 4* 0x0001000100010001ULL;
usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
(srcFilter->chrV && srcFilter->chrV->length>1) ||
(dstFilter->lumV && dstFilter->lumV->length>1) ||
(dstFilter->chrV && dstFilter->chrV->length>1);
usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
(srcFilter->chrH && srcFilter->chrH->length>1) ||
(dstFilter->lumH && dstFilter->lumH->length>1) ||
(dstFilter->chrH && dstFilter->chrH->length>1);
getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
// reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
// drop some chroma lines if the user wants it
c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
c->chrSrcVSubSample+= c->vChrDrop;
// drop every other pixel for chroma calculation unless user wants full chroma
if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
&& srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
&& srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
&& srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
&& ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
c->chrSrcHSubSample=1;
if (param) {
c->param[0] = param[0];
c->param[1] = param[1];
} else {
c->param[0] =
c->param[1] = SWS_PARAM_DEFAULT;
}
// Note the -((-x)>>y) is so that we always round toward +inf.
c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
/* unscaled special cases */
if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isAnyRGB(dstFormat))) {
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
ff_get_unscaled_swscale(c);
if (c->swScale) {
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
return c;
}
}
if (flags & SWS_CPU_CAPS_MMX2) {
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
}
if (usesHFilter) c->canMMX2BeUsed=0;
}
else
c->canMMX2BeUsed=0;
c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
// but only for the FAST_BILINEAR mode otherwise do correct scaling
// n-2 is the last chrominance sample available
// this is not perfect, but no one should notice the difference, the more correct variant
// would be like the vertical one, but that would require some special code for the
// first and last pixel
if (flags&SWS_FAST_BILINEAR) {
if (c->canMMX2BeUsed) {
c->lumXInc+= 20;
c->chrXInc+= 20;
}
//we don't use the x86 asm scaler if MMX is available
else if (flags & SWS_CPU_CAPS_MMX) {
c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
}
}
/* precalculate horizontal scaler filter coefficients */
{
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
// can't downscale !!!
if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
#ifdef MAP_ANONYMOUS
c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
#elif HAVE_VIRTUALALLOC
c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
#else
c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
#endif
Reimar Döffinger
committed
if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
goto fail;
FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
#ifdef MAP_ANONYMOUS
mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
#endif
} else
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
{
const int filterAlign=
(flags & SWS_CPU_CAPS_MMX) ? 4 :
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1;
if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
srcW , dstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
srcFilter->lumH, dstFilter->lumH, c->param) < 0)
goto fail;
if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
srcFilter->chrH, dstFilter->chrH, c->param) < 0)
goto fail;
}