Skip to content
Snippets Groups Projects
utils.c 56.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
     *
     * This file is part of FFmpeg.
     *
    
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
    
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
    
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
    
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #define _SVID_SOURCE //needed for MAP_ANONYMOUS
    #include <inttypes.h>
    #include <string.h>
    #include <math.h>
    #include <stdio.h>
    #include "config.h"
    #include <assert.h>
    #if HAVE_SYS_MMAN_H
    #include <sys/mman.h>
    #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
    #define MAP_ANONYMOUS MAP_ANON
    #endif
    #endif
    #if HAVE_VIRTUALALLOC
    #define WIN32_LEAN_AND_MEAN
    #include <windows.h>
    #endif
    #include "swscale.h"
    #include "swscale_internal.h"
    #include "rgb2rgb.h"
    #include "libavutil/intreadwrite.h"
    #include "libavutil/x86_cpu.h"
    #include "libavutil/avutil.h"
    #include "libavutil/bswap.h"
    #include "libavutil/pixdesc.h"
    
    unsigned swscale_version(void)
    {
        return LIBSWSCALE_VERSION_INT;
    }
    
    const char *swscale_configuration(void)
    {
        return FFMPEG_CONFIGURATION;
    }
    
    const char *swscale_license(void)
    {
    #define LICENSE_PREFIX "libswscale license: "
        return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
    }
    
    #define RET 0xC3 //near return opcode for x86
    
    #define isSupportedIn(x)    (       \
               (x)==PIX_FMT_YUV420P     \
            || (x)==PIX_FMT_YUVA420P    \
            || (x)==PIX_FMT_YUYV422     \
            || (x)==PIX_FMT_UYVY422     \
            || (x)==PIX_FMT_RGB48BE     \
            || (x)==PIX_FMT_RGB48LE     \
            || (x)==PIX_FMT_RGB32       \
            || (x)==PIX_FMT_RGB32_1     \
            || (x)==PIX_FMT_BGR24       \
            || (x)==PIX_FMT_BGR565      \
            || (x)==PIX_FMT_BGR555      \
            || (x)==PIX_FMT_BGR32       \
            || (x)==PIX_FMT_BGR32_1     \
            || (x)==PIX_FMT_RGB24       \
            || (x)==PIX_FMT_RGB565      \
            || (x)==PIX_FMT_RGB555      \
            || (x)==PIX_FMT_GRAY8       \
            || (x)==PIX_FMT_YUV410P     \
            || (x)==PIX_FMT_YUV440P     \
            || (x)==PIX_FMT_NV12        \
            || (x)==PIX_FMT_NV21        \
            || (x)==PIX_FMT_GRAY16BE    \
            || (x)==PIX_FMT_GRAY16LE    \
            || (x)==PIX_FMT_YUV444P     \
            || (x)==PIX_FMT_YUV422P     \
            || (x)==PIX_FMT_YUV411P     \
    
            || (x)==PIX_FMT_YUVJ420P    \
            || (x)==PIX_FMT_YUVJ422P    \
            || (x)==PIX_FMT_YUVJ440P    \
            || (x)==PIX_FMT_YUVJ444P    \
    
            || (x)==PIX_FMT_PAL8        \
            || (x)==PIX_FMT_BGR8        \
            || (x)==PIX_FMT_RGB8        \
            || (x)==PIX_FMT_BGR4_BYTE   \
            || (x)==PIX_FMT_RGB4_BYTE   \
            || (x)==PIX_FMT_YUV440P     \
            || (x)==PIX_FMT_MONOWHITE   \
            || (x)==PIX_FMT_MONOBLACK   \
            || (x)==PIX_FMT_YUV420P16LE   \
            || (x)==PIX_FMT_YUV422P16LE   \
            || (x)==PIX_FMT_YUV444P16LE   \
            || (x)==PIX_FMT_YUV420P16BE   \
            || (x)==PIX_FMT_YUV422P16BE   \
            || (x)==PIX_FMT_YUV444P16BE   \
        )
    
    int sws_isSupportedInput(enum PixelFormat pix_fmt)
    {
        return isSupportedIn(pix_fmt);
    }
    
    #define isSupportedOut(x)   (       \
               (x)==PIX_FMT_YUV420P     \
            || (x)==PIX_FMT_YUVA420P    \
            || (x)==PIX_FMT_YUYV422     \
            || (x)==PIX_FMT_UYVY422     \
            || (x)==PIX_FMT_YUV444P     \
            || (x)==PIX_FMT_YUV422P     \
            || (x)==PIX_FMT_YUV411P     \
    
            || (x)==PIX_FMT_YUVJ420P    \
            || (x)==PIX_FMT_YUVJ422P    \
            || (x)==PIX_FMT_YUVJ440P    \
            || (x)==PIX_FMT_YUVJ444P    \
    
            || isAnyRGB(x)              \
    
            || (x)==PIX_FMT_NV12        \
            || (x)==PIX_FMT_NV21        \
            || (x)==PIX_FMT_GRAY16BE    \
            || (x)==PIX_FMT_GRAY16LE    \
            || (x)==PIX_FMT_GRAY8       \
            || (x)==PIX_FMT_YUV410P     \
            || (x)==PIX_FMT_YUV440P     \
            || (x)==PIX_FMT_YUV420P16LE   \
            || (x)==PIX_FMT_YUV422P16LE   \
            || (x)==PIX_FMT_YUV444P16LE   \
            || (x)==PIX_FMT_YUV420P16BE   \
            || (x)==PIX_FMT_YUV422P16BE   \
            || (x)==PIX_FMT_YUV444P16BE   \
        )
    
    int sws_isSupportedOutput(enum PixelFormat pix_fmt)
    {
        return isSupportedOut(pix_fmt);
    }
    
    extern const int32_t ff_yuv2rgb_coeffs[8][4];
    
    const char *sws_format_name(enum PixelFormat format)
    {
        if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
            return av_pix_fmt_descriptors[format].name;
        else
            return "Unknown format";
    }
    
    static double getSplineCoeff(double a, double b, double c, double d, double dist)
    {
    //    printf("%f %f %f %f %f\n", a,b,c,d,dist);
        if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
        else           return getSplineCoeff(        0.0,
                                              b+ 2.0*c + 3.0*d,
                                                     c + 3.0*d,
                                             -b- 3.0*c - 6.0*d,
                                             dist-1.0);
    }
    
    static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
                          int srcW, int dstW, int filterAlign, int one, int flags,
                          SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
    {
        int i;
        int filterSize;
        int filter2Size;
        int minFilterSize;
        int64_t *filter=NULL;
        int64_t *filter2=NULL;
        const int64_t fone= 1LL<<54;
        int ret= -1;
    #if ARCH_X86
        if (flags & SWS_CPU_CAPS_MMX)
            __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
    #endif
    
        // NOTE: the +1 is for the MMX scaler which reads over the end
        FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
    
        if (FFABS(xInc - 0x10000) <10) { // unscaled
            int i;
            filterSize= 1;
            FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
    
            for (i=0; i<dstW; i++) {
                filter[i*filterSize]= fone;
                (*filterPos)[i]=i;
            }
    
        } else if (flags&SWS_POINT) { // lame looking point sampling mode
            int i;
            int xDstInSrc;
            filterSize= 1;
            FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
    
            xDstInSrc= xInc/2 - 0x8000;
            for (i=0; i<dstW; i++) {
                int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
    
                (*filterPos)[i]= xx;
                filter[i]= fone;
                xDstInSrc+= xInc;
            }
        } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
            int i;
            int xDstInSrc;
            filterSize= 2;
            FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
    
            xDstInSrc= xInc/2 - 0x8000;
            for (i=0; i<dstW; i++) {
                int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
                int j;
    
                (*filterPos)[i]= xx;
                //bilinear upscale / linear interpolate / area averaging
                for (j=0; j<filterSize; j++) {
                    int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
                    if (coeff<0) coeff=0;
                    filter[i*filterSize + j]= coeff;
                    xx++;
                }
                xDstInSrc+= xInc;
            }
        } else {
            int xDstInSrc;
            int sizeFactor;
    
            if      (flags&SWS_BICUBIC)      sizeFactor=  4;
            else if (flags&SWS_X)            sizeFactor=  8;
            else if (flags&SWS_AREA)         sizeFactor=  1; //downscale only, for upscale it is bilinear
            else if (flags&SWS_GAUSS)        sizeFactor=  8;   // infinite ;)
            else if (flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
            else if (flags&SWS_SINC)         sizeFactor= 20; // infinite ;)
            else if (flags&SWS_SPLINE)       sizeFactor= 20;  // infinite ;)
            else if (flags&SWS_BILINEAR)     sizeFactor=  2;
            else {
                sizeFactor= 0; //GCC warning killer
                assert(0);
            }
    
            if (xInc <= 1<<16)      filterSize= 1 + sizeFactor; // upscale
            else                    filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
    
            if (filterSize > srcW-2) filterSize=srcW-2;
    
            FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
    
            xDstInSrc= xInc - 0x10000;
            for (i=0; i<dstW; i++) {
                int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
                int j;
                (*filterPos)[i]= xx;
                for (j=0; j<filterSize; j++) {
                    int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
                    double floatd;
                    int64_t coeff;
    
                    if (xInc > 1<<16)
                        d= d*dstW/srcW;
                    floatd= d * (1.0/(1<<30));
    
                    if (flags & SWS_BICUBIC) {
                        int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] :   0) * (1<<24);
                        int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
                        int64_t dd = ( d*d)>>30;
                        int64_t ddd= (dd*d)>>30;
    
                        if      (d < 1LL<<30)
                            coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
                        else if (d < 1LL<<31)
                            coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
                        else
                            coeff=0.0;
                        coeff *= fone>>(30+24);
                    }
    /*                else if (flags & SWS_X) {
                        double p= param ? param*0.01 : 0.3;
                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
                        coeff*= pow(2.0, - p*d*d);
                    }*/
                    else if (flags & SWS_X) {
                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
                        double c;
    
                        if (floatd<1.0)
    
                        else
                            c=-1.0;
                        if (c<0.0)      c= -pow(-c, A);
                        else            c=  pow( c, A);
                        coeff= (c*0.5 + 0.5)*fone;
                    } else if (flags & SWS_AREA) {
                        int64_t d2= d - (1<<29);
                        if      (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
                        else if (d2*xInc <  (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
                        else coeff=0.0;
                        coeff *= fone>>(30+16);
                    } else if (flags & SWS_GAUSS) {
                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                        coeff = (pow(2.0, - p*floatd*floatd))*fone;
                    } else if (flags & SWS_SINC) {
    
                        coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
    
                    } else if (flags & SWS_LANCZOS) {
                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
    
                        coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
    
                        if (floatd>p) coeff=0;
                    } else if (flags & SWS_BILINEAR) {
                        coeff= (1<<30) - d;
                        if (coeff<0) coeff=0;
                        coeff *= fone >> 30;
                    } else if (flags & SWS_SPLINE) {
                        double p=-2.196152422706632;
                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
                    } else {
                        coeff= 0.0; //GCC warning killer
                        assert(0);
                    }
    
                    filter[i*filterSize + j]= coeff;
                    xx++;
                }
                xDstInSrc+= 2*xInc;
            }
        }
    
        /* apply src & dst Filter to filter -> filter2
           av_free(filter);
        */
        assert(filterSize>0);
        filter2Size= filterSize;
        if (srcFilter) filter2Size+= srcFilter->length - 1;
        if (dstFilter) filter2Size+= dstFilter->length - 1;
        assert(filter2Size>0);
        FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
    
        for (i=0; i<dstW; i++) {
            int j, k;
    
            if(srcFilter) {
                for (k=0; k<srcFilter->length; k++) {
                    for (j=0; j<filterSize; j++)
                        filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
                }
            } else {
                for (j=0; j<filterSize; j++)
                    filter2[i*filter2Size + j]= filter[i*filterSize + j];
            }
            //FIXME dstFilter
    
            (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
        }
        av_freep(&filter);
    
        /* try to reduce the filter-size (step1 find size and shift left) */
        // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
        minFilterSize= 0;
        for (i=dstW-1; i>=0; i--) {
            int min= filter2Size;
            int j;
            int64_t cutOff=0.0;
    
            /* get rid of near zero elements on the left by shifting left */
            for (j=0; j<filter2Size; j++) {
                int k;
                cutOff += FFABS(filter2[i*filter2Size]);
    
                if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
    
                /* preserve monotonicity because the core can't handle the filter otherwise */
                if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
    
                // move filter coefficients left
                for (k=1; k<filter2Size; k++)
                    filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
                filter2[i*filter2Size + k - 1]= 0;
                (*filterPos)[i]++;
            }
    
            cutOff=0;
            /* count near zeros on the right */
            for (j=filter2Size-1; j>0; j--) {
                cutOff += FFABS(filter2[i*filter2Size + j]);
    
                if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
                min--;
            }
    
            if (min>minFilterSize) minFilterSize= min;
        }
    
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
            // we can handle the special case 4,
            // so we don't want to go to the full 8
            if (minFilterSize < 5)
                filterAlign = 4;
    
            // We really don't want to waste our time
            // doing useless computation, so fall back on
            // the scalar C code for very small filters.
            // Vectorizing is worth it only if you have a
            // decent-sized vector.
            if (minFilterSize < 3)
                filterAlign = 1;
        }
    
        if (flags & SWS_CPU_CAPS_MMX) {
            // special case for unscaled vertical filtering
            if (minFilterSize == 1 && filterAlign == 2)
                filterAlign= 1;
        }
    
        assert(minFilterSize > 0);
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
        assert(filterSize > 0);
        filter= av_malloc(filterSize*dstW*sizeof(*filter));
        if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
            goto fail;
        *outFilterSize= filterSize;
    
        if (flags&SWS_PRINT_INFO)
            av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
        /* try to reduce the filter-size (step2 reduce it) */
        for (i=0; i<dstW; i++) {
            int j;
    
            for (j=0; j<filterSize; j++) {
                if (j>=filter2Size) filter[i*filterSize + j]= 0;
                else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
                if((flags & SWS_BITEXACT) && j>=minFilterSize)
                    filter[i*filterSize + j]= 0;
            }
        }
    
        //FIXME try to align filterPos if possible
    
        //fix borders
        for (i=0; i<dstW; i++) {
            int j;
            if ((*filterPos)[i] < 0) {
                // move filter coefficients left to compensate for filterPos
                for (j=1; j<filterSize; j++) {
                    int left= FFMAX(j + (*filterPos)[i], 0);
                    filter[i*filterSize + left] += filter[i*filterSize + j];
                    filter[i*filterSize + j]=0;
                }
                (*filterPos)[i]= 0;
            }
    
            if ((*filterPos)[i] + filterSize > srcW) {
                int shift= (*filterPos)[i] + filterSize - srcW;
                // move filter coefficients right to compensate for filterPos
                for (j=filterSize-2; j>=0; j--) {
                    int right= FFMIN(j + shift, filterSize-1);
                    filter[i*filterSize +right] += filter[i*filterSize +j];
                    filter[i*filterSize +j]=0;
                }
                (*filterPos)[i]= srcW - filterSize;
            }
        }
    
        // Note the +1 is for the MMX scaler which reads over the end
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
        FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
    
        /* normalize & store in outFilter */
        for (i=0; i<dstW; i++) {
            int j;
            int64_t error=0;
            int64_t sum=0;
    
            for (j=0; j<filterSize; j++) {
                sum+= filter[i*filterSize + j];
            }
            sum= (sum + one/2)/ one;
            for (j=0; j<*outFilterSize; j++) {
                int64_t v= filter[i*filterSize + j] + error;
                int intV= ROUNDED_DIV(v, sum);
                (*outFilter)[i*(*outFilterSize) + j]= intV;
                error= v - intV*sum;
            }
        }
    
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
        for (i=0; i<*outFilterSize; i++) {
            int j= dstW*(*outFilterSize);
            (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
        }
    
        ret=0;
    fail:
        av_free(filter);
        av_free(filter2);
        return ret;
    }
    
    
    #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
    
    static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
    {
        uint8_t *fragmentA;
        x86_reg imm8OfPShufW1A;
        x86_reg imm8OfPShufW2A;
        x86_reg fragmentLengthA;
        uint8_t *fragmentB;
        x86_reg imm8OfPShufW1B;
        x86_reg imm8OfPShufW2B;
        x86_reg fragmentLengthB;
        int fragmentPos;
    
        int xpos, i;
    
        // create an optimized horizontal scaling routine
        /* This scaler is made of runtime-generated MMX2 code using specially
         * tuned pshufw instructions. For every four output pixels, if four
         * input pixels are enough for the fast bilinear scaling, then a chunk
         * of fragmentB is used. If five input pixels are needed, then a chunk
         * of fragmentA is used.
         */
    
        //code fragment
    
        __asm__ volatile(
            "jmp                         9f                 \n\t"
        // Begin
            "0:                                             \n\t"
            "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
            "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
            "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
            "punpcklbw                %%mm7, %%mm1          \n\t"
            "punpcklbw                %%mm7, %%mm0          \n\t"
            "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
            "1:                                             \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
            "2:                                             \n\t"
            "psubw                    %%mm1, %%mm0          \n\t"
            "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
            "pmullw                   %%mm3, %%mm0          \n\t"
            "psllw                       $7, %%mm1          \n\t"
            "paddw                    %%mm1, %%mm0          \n\t"
    
            "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
    
            "add                         $8, %%"REG_a"      \n\t"
        // End
            "9:                                             \n\t"
    //        "int $3                                         \n\t"
            "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
            "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
            "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
            "dec                         %1                 \n\t"
            "dec                         %2                 \n\t"
            "sub                         %0, %1             \n\t"
            "sub                         %0, %2             \n\t"
            "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
            "sub                         %0, %3             \n\t"
    
    
            :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
            "=r" (fragmentLengthA)
        );
    
        __asm__ volatile(
            "jmp                         9f                 \n\t"
        // Begin
            "0:                                             \n\t"
            "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
            "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
            "punpcklbw                %%mm7, %%mm0          \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
            "1:                                             \n\t"
            "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
            "2:                                             \n\t"
            "psubw                    %%mm1, %%mm0          \n\t"
            "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
            "pmullw                   %%mm3, %%mm0          \n\t"
            "psllw                       $7, %%mm1          \n\t"
            "paddw                    %%mm1, %%mm0          \n\t"
    
            "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
    
            "add                         $8, %%"REG_a"      \n\t"
        // End
            "9:                                             \n\t"
    //        "int                       $3                   \n\t"
            "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
            "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
            "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
            "dec                         %1                 \n\t"
            "dec                         %2                 \n\t"
            "sub                         %0, %1             \n\t"
            "sub                         %0, %2             \n\t"
            "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
            "sub                         %0, %3             \n\t"
    
    
            :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
            "=r" (fragmentLengthB)
        );
    
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
        fragmentPos=0;
    
        for (i=0; i<dstW/numSplits; i++) {
            int xx=xpos>>16;
    
            if ((i&3) == 0) {
                int a=0;
                int b=((xpos+xInc)>>16) - xx;
                int c=((xpos+xInc*2)>>16) - xx;
                int d=((xpos+xInc*3)>>16) - xx;
                int inc                = (d+1<4);
                uint8_t *fragment      = (d+1<4) ? fragmentB       : fragmentA;
                x86_reg imm8OfPShufW1  = (d+1<4) ? imm8OfPShufW1B  : imm8OfPShufW1A;
                x86_reg imm8OfPShufW2  = (d+1<4) ? imm8OfPShufW2B  : imm8OfPShufW2A;
                x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
                int maxShift= 3-(d+inc);
                int shift=0;
    
                if (filterCode) {
                    filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
                    filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
                    filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
                    filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
                    filterPos[i/2]= xx;
    
                    memcpy(filterCode + fragmentPos, fragment, fragmentLength);
    
                    filterCode[fragmentPos + imm8OfPShufW1]=
                        (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
                    filterCode[fragmentPos + imm8OfPShufW2]=
                        a | (b<<2) | (c<<4) | (d<<6);
    
                    if (i+4-inc>=dstW) shift=maxShift; //avoid overread
                    else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
    
                    if (shift && i>=shift) {
                        filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
                        filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
                        filterPos[i/2]-=shift;
                    }
                }
    
                fragmentPos+= fragmentLength;
    
                if (filterCode)
                    filterCode[fragmentPos]= RET;
            }
            xpos+=xInc;
        }
        if (filterCode)
            filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
    
        return fragmentPos + 1;
    }
    
    #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
    
    
    static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
    {
        *h = av_pix_fmt_descriptors[format].log2_chroma_w;
        *v = av_pix_fmt_descriptors[format].log2_chroma_h;
    }
    
    static uint16_t roundToInt16(int64_t f)
    {
        int r= (f + (1<<15))>>16;
             if (r<-0x7FFF) return 0x8000;
        else if (r> 0x7FFF) return 0x7FFF;
        else                return r;
    }
    
    int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
    {
        int64_t crv =  inv_table[0];
        int64_t cbu =  inv_table[1];
        int64_t cgu = -inv_table[2];
        int64_t cgv = -inv_table[3];
        int64_t cy  = 1<<16;
        int64_t oy  = 0;
    
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
    
        c->brightness= brightness;
        c->contrast  = contrast;
        c->saturation= saturation;
        c->srcRange  = srcRange;
        c->dstRange  = dstRange;
        if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
    
        c->uOffset=   0x0400040004000400LL;
        c->vOffset=   0x0400040004000400LL;
    
        if (!srcRange) {
            cy= (cy*255) / 219;
            oy= 16<<16;
        } else {
            crv= (crv*224) / 255;
            cbu= (cbu*224) / 255;
            cgu= (cgu*224) / 255;
            cgv= (cgv*224) / 255;
        }
    
        cy = (cy *contrast             )>>16;
        crv= (crv*contrast * saturation)>>32;
        cbu= (cbu*contrast * saturation)>>32;
        cgu= (cgu*contrast * saturation)>>32;
        cgv= (cgv*contrast * saturation)>>32;
    
        oy -= 256*brightness;
    
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
    
        c->yuv2rgb_y_coeff  = (int16_t)roundToInt16(cy <<13);
        c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
        c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
        c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
        c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
        c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
    
        ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
        //FIXME factorize
    
    
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
            ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
    #endif
        return 0;
    }
    
    int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
    {
        if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
    
        *inv_table = c->srcColorspaceTable;
        *table     = c->dstColorspaceTable;
        *srcRange  = c->srcRange;
        *dstRange  = c->dstRange;
        *brightness= c->brightness;
        *contrast  = c->contrast;
        *saturation= c->saturation;
    
        return 0;
    }
    
    static int handle_jpeg(enum PixelFormat *format)
    {
        switch (*format) {
        case PIX_FMT_YUVJ420P:
            *format = PIX_FMT_YUV420P;
            return 1;
        case PIX_FMT_YUVJ422P:
            *format = PIX_FMT_YUV422P;
            return 1;
        case PIX_FMT_YUVJ444P:
            *format = PIX_FMT_YUV444P;
            return 1;
        case PIX_FMT_YUVJ440P:
            *format = PIX_FMT_YUV440P;
            return 1;
        default:
            return 0;
        }
    }
    
    SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
                               int dstW, int dstH, enum PixelFormat dstFormat, int flags,
                               SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
    {
        SwsContext *c;
        int i;
        int usesVFilter, usesHFilter;
        int unscaled;
        int srcRange, dstRange;
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
    #if ARCH_X86
        if (flags & SWS_CPU_CAPS_MMX)
            __asm__ volatile("emms\n\t"::: "memory");
    #endif
    
    #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
        flags |= ff_hardcodedcpuflags();
    #endif /* CONFIG_RUNTIME_CPUDETECT */
        if (!rgb15to16) sws_rgb2rgb_init(flags);
    
        unscaled = (srcW == dstW && srcH == dstH);
    
        srcRange = handle_jpeg(&srcFormat);
        dstRange = handle_jpeg(&dstFormat);
    
        if (!isSupportedIn(srcFormat)) {
            av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
            return NULL;
        }
        if (!isSupportedOut(dstFormat)) {
            av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
            return NULL;
        }
    
        i= flags & ( SWS_POINT
                    |SWS_AREA
                    |SWS_BILINEAR
                    |SWS_FAST_BILINEAR
                    |SWS_BICUBIC
                    |SWS_X
                    |SWS_GAUSS
                    |SWS_LANCZOS
                    |SWS_SINC
                    |SWS_SPLINE
                    |SWS_BICUBLIN);
        if(!i || (i & (i-1))) {
            av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
            return NULL;
        }
    
        /* sanity check */
        if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
            av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
                   srcW, srcH, dstW, dstH);
            return NULL;
        }
        if(srcW > VOFW || dstW > VOFW) {
            av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
            return NULL;
        }
    
        if (!dstFilter) dstFilter= &dummyFilter;
        if (!srcFilter) srcFilter= &dummyFilter;
    
        FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
    
        c->av_class = &sws_context_class;
        c->srcW= srcW;
        c->srcH= srcH;
        c->dstW= dstW;
        c->dstH= dstH;
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
        c->flags= flags;
        c->dstFormat= dstFormat;
        c->srcFormat= srcFormat;
    
        c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
        c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
    
        c->vRounder= 4* 0x0001000100010001ULL;
    
    
        usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
                      (srcFilter->chrV && srcFilter->chrV->length>1) ||
                      (dstFilter->lumV && dstFilter->lumV->length>1) ||
                      (dstFilter->chrV && dstFilter->chrV->length>1);
        usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
                      (srcFilter->chrH && srcFilter->chrH->length>1) ||
                      (dstFilter->lumH && dstFilter->lumH->length>1) ||
                      (dstFilter->chrH && dstFilter->chrH->length>1);
    
    
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
    
        // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
    
        if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
    
    
        // drop some chroma lines if the user wants it
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
        c->chrSrcVSubSample+= c->vChrDrop;
    
        // drop every other pixel for chroma calculation unless user wants full chroma
    
        if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
    
          && srcFormat!=PIX_FMT_RGB8      && srcFormat!=PIX_FMT_BGR8
          && srcFormat!=PIX_FMT_RGB4      && srcFormat!=PIX_FMT_BGR4
          && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
          && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
            c->chrSrcHSubSample=1;
    
        if (param) {
            c->param[0] = param[0];
            c->param[1] = param[1];
        } else {
            c->param[0] =
            c->param[1] = SWS_PARAM_DEFAULT;
        }
    
        // Note the -((-x)>>y) is so that we always round toward +inf.
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
    
        sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
    
        /* unscaled special cases */
    
        if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isAnyRGB(dstFormat))) {
    
            ff_get_unscaled_swscale(c);
    
            if (c->swScale) {
                if (flags&SWS_PRINT_INFO)
                    av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
                           sws_format_name(srcFormat), sws_format_name(dstFormat));
                return c;
            }
        }
    
        if (flags & SWS_CPU_CAPS_MMX2) {
            c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
            if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
                if (flags&SWS_PRINT_INFO)
                    av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
            }
            if (usesHFilter) c->canMMX2BeUsed=0;
        }
        else
            c->canMMX2BeUsed=0;
    
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
    
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
        // n-2 is the last chrominance sample available
        // this is not perfect, but no one should notice the difference, the more correct variant
        // would be like the vertical one, but that would require some special code for the
        // first and last pixel
        if (flags&SWS_FAST_BILINEAR) {
            if (c->canMMX2BeUsed) {
                c->lumXInc+= 20;
                c->chrXInc+= 20;
            }
            //we don't use the x86 asm scaler if MMX is available
            else if (flags & SWS_CPU_CAPS_MMX) {
                c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
                c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
            }
        }
    
        /* precalculate horizontal scaler filter coefficients */
        {
    
    #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
    
    // can't downscale !!!
            if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
                c->lumMmx2FilterCodeSize = initMMX2HScaler(      dstW, c->lumXInc, NULL, NULL, NULL, 8);
                c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
    
    #ifdef MAP_ANONYMOUS
                c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
                c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
    #elif HAVE_VIRTUALALLOC
                c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
                c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
    #else
                c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
                c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
    #endif
    
    
                if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
                    goto fail;
    
                FF_ALLOCZ_OR_GOTO(c, c->hLumFilter   , (dstW        /8+8)*sizeof(int16_t), fail);
                FF_ALLOCZ_OR_GOTO(c, c->hChrFilter   , (c->chrDstW  /4+8)*sizeof(int16_t), fail);
                FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW      /2/8+8)*sizeof(int32_t), fail);
                FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
    
                initMMX2HScaler(      dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
                initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
    
    #ifdef MAP_ANONYMOUS
                mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
                mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
    #endif
            } else
    
    #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
    
            {
                const int filterAlign=
                    (flags & SWS_CPU_CAPS_MMX) ? 4 :
                    (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
                    1;
    
                if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
                               srcW      ,       dstW, filterAlign, 1<<14,
                               (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
                               srcFilter->lumH, dstFilter->lumH, c->param) < 0)
                    goto fail;
                if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
                               c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
                               (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
                               srcFilter->chrH, dstFilter->chrH, c->param) < 0)
                    goto fail;
            }