Skip to content
Snippets Groups Projects
resample.c 15.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • Justin Ruggles's avatar
    Justin Ruggles committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    /*
     * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
     * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
     *
     * This file is part of Libav.
     *
     * Libav is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * Libav is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with Libav; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include "libavutil/libm.h"
    #include "libavutil/log.h"
    #include "internal.h"
    #include "audio_data.h"
    
    #ifdef CONFIG_RESAMPLE_FLT
    /* float template */
    #define FILTER_SHIFT  0
    #define FELEM         float
    #define FELEM2        float
    #define FELEML        float
    #define WINDOW_TYPE   24
    #elifdef CONFIG_RESAMPLE_S32
    /* s32 template */
    #define FILTER_SHIFT  30
    #define FELEM         int32_t
    #define FELEM2        int64_t
    #define FELEML        int64_t
    #define FELEM_MAX     INT32_MAX
    #define FELEM_MIN     INT32_MIN
    #define WINDOW_TYPE   12
    #else
    /* s16 template */
    #define FILTER_SHIFT  15
    #define FELEM         int16_t
    #define FELEM2        int32_t
    #define FELEML        int64_t
    #define FELEM_MAX     INT16_MAX
    #define FELEM_MIN     INT16_MIN
    #define WINDOW_TYPE   9
    #endif
    
    struct ResampleContext {
        AVAudioResampleContext *avr;
        AudioData *buffer;
        FELEM *filter_bank;
        int filter_length;
        int ideal_dst_incr;
        int dst_incr;
        int index;
        int frac;
        int src_incr;
        int compensation_distance;
        int phase_shift;
        int phase_mask;
        int linear;
        double factor;
    };
    
    /**
     * 0th order modified bessel function of the first kind.
     */
    static double bessel(double x)
    {
        double v     = 1;
        double lastv = 0;
        double t     = 1;
        int i;
    
        x = x * x / 4;
        for (i = 1; v != lastv; i++) {
            lastv = v;
            t    *= x / (i * i);
            v    += t;
        }
        return v;
    }
    
    /**
     * Build a polyphase filterbank.
     *
     * @param[out] filter       filter coefficients
     * @param      factor       resampling factor
     * @param      tap_count    tap count
     * @param      phase_count  phase count
     * @param      scale        wanted sum of coefficients for each filter
     * @param      type         0->cubic
     *                          1->blackman nuttall windowed sinc
     *                          2..16->kaiser windowed sinc beta=2..16
     * @return                  0 on success, negative AVERROR code on failure
     */
    static int build_filter(FELEM *filter, double factor, int tap_count,
                            int phase_count, int scale, int type)
    {
        int ph, i;
        double x, y, w;
        double *tab;
        const int center = (tap_count - 1) / 2;
    
        tab = av_malloc(tap_count * sizeof(*tab));
        if (!tab)
            return AVERROR(ENOMEM);
    
        /* if upsampling, only need to interpolate, no filter */
        if (factor > 1.0)
            factor = 1.0;
    
        for (ph = 0; ph < phase_count; ph++) {
            double norm = 0;
            for (i = 0; i < tap_count; i++) {
                x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
                if (x == 0) y = 1.0;
                else        y = sin(x) / x;
                switch (type) {
                case 0: {
                    const float d = -0.5; //first order derivative = -0.5
                    x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
                    if (x < 1.0) y = 1 - 3 * x*x + 2 * x*x*x + d * (                -x*x + x*x*x);
                    else         y =                           d * (-4 + 8 * x - 5 * x*x + x*x*x);
                    break;
                }
                case 1:
                    w  = 2.0 * x / (factor * tap_count) + M_PI;
                    y *= 0.3635819 - 0.4891775 * cos(    w) +
                                     0.1365995 * cos(2 * w) -
                                     0.0106411 * cos(3 * w);
                    break;
                default:
                    w  = 2.0 * x / (factor * tap_count * M_PI);
                    y *= bessel(type * sqrt(FFMAX(1 - w * w, 0)));
                    break;
                }
    
                tab[i] = y;
                norm  += y;
            }
    
            /* normalize so that an uniform color remains the same */
            for (i = 0; i < tap_count; i++) {
    #ifdef CONFIG_RESAMPLE_FLT
                filter[ph * tap_count + i] = tab[i] / norm;
    #else
                filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm),
                                                     FELEM_MIN, FELEM_MAX);
    #endif
            }
        }
    
        av_free(tab);
        return 0;
    }
    
    ResampleContext *ff_audio_resample_init(AVAudioResampleContext *avr)
    {
        ResampleContext *c;
        int out_rate    = avr->out_sample_rate;
        int in_rate     = avr->in_sample_rate;
        double factor   = FFMIN(out_rate * avr->cutoff / in_rate, 1.0);
        int phase_count = 1 << avr->phase_shift;
    
        /* TODO: add support for s32 and float internal formats */
        if (avr->internal_sample_fmt != AV_SAMPLE_FMT_S16P) {
            av_log(avr, AV_LOG_ERROR, "Unsupported internal format for "
                   "resampling: %s\n",
                   av_get_sample_fmt_name(avr->internal_sample_fmt));
            return NULL;
        }
        c = av_mallocz(sizeof(*c));
        if (!c)
            return NULL;
    
        c->avr           = avr;
        c->phase_shift   = avr->phase_shift;
        c->phase_mask    = phase_count - 1;
        c->linear        = avr->linear_interp;
        c->factor        = factor;
        c->filter_length = FFMAX((int)ceil(avr->filter_size / factor), 1);
    
        c->filter_bank = av_mallocz(c->filter_length * (phase_count + 1) * sizeof(FELEM));
        if (!c->filter_bank)
            goto error;
    
        if (build_filter(c->filter_bank, factor, c->filter_length, phase_count,
                         1 << FILTER_SHIFT, WINDOW_TYPE) < 0)
            goto error;
    
        memcpy(&c->filter_bank[c->filter_length * phase_count + 1],
               c->filter_bank, (c->filter_length - 1) * sizeof(FELEM));
        c->filter_bank[c->filter_length * phase_count] = c->filter_bank[c->filter_length - 1];
    
        c->compensation_distance = 0;
        if (!av_reduce(&c->src_incr, &c->dst_incr, out_rate,
                       in_rate * (int64_t)phase_count, INT32_MAX / 2))
            goto error;
        c->ideal_dst_incr = c->dst_incr;
    
        c->index = -phase_count * ((c->filter_length - 1) / 2);
        c->frac  = 0;
    
        /* allocate internal buffer */
        c->buffer = ff_audio_data_alloc(avr->resample_channels, 0,
                                        avr->internal_sample_fmt,
                                        "resample buffer");
        if (!c->buffer)
            goto error;
    
        av_log(avr, AV_LOG_DEBUG, "resample: %s from %d Hz to %d Hz\n",
               av_get_sample_fmt_name(avr->internal_sample_fmt),
               avr->in_sample_rate, avr->out_sample_rate);
    
        return c;
    
    error:
        ff_audio_data_free(&c->buffer);
        av_free(c->filter_bank);
        av_free(c);
        return NULL;
    }
    
    void ff_audio_resample_free(ResampleContext **c)
    {
        if (!*c)
            return;
        ff_audio_data_free(&(*c)->buffer);
        av_free((*c)->filter_bank);
        av_freep(c);
    }
    
    int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta,
                                    int compensation_distance)
    {
        ResampleContext *c;
        AudioData *fifo_buf = NULL;
        int ret = 0;
    
        if (compensation_distance < 0)
            return AVERROR(EINVAL);
        if (!compensation_distance && sample_delta)
            return AVERROR(EINVAL);
    
        /* if resampling was not enabled previously, re-initialize the
           AVAudioResampleContext and force resampling */
        if (!avr->resample_needed) {
            int fifo_samples;
            double matrix[AVRESAMPLE_MAX_CHANNELS * AVRESAMPLE_MAX_CHANNELS] = { 0 };
    
            /* buffer any remaining samples in the output FIFO before closing */
            fifo_samples = av_audio_fifo_size(avr->out_fifo);
            if (fifo_samples > 0) {
                fifo_buf = ff_audio_data_alloc(avr->out_channels, fifo_samples,
                                               avr->out_sample_fmt, NULL);
                if (!fifo_buf)
                    return AVERROR(EINVAL);
                ret = ff_audio_data_read_from_fifo(avr->out_fifo, fifo_buf,
                                                   fifo_samples);
                if (ret < 0)
                    goto reinit_fail;
            }
            /* save the channel mixing matrix */
            ret = avresample_get_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
            if (ret < 0)
                goto reinit_fail;
    
            /* close the AVAudioResampleContext */
            avresample_close(avr);
    
            avr->force_resampling = 1;
    
            /* restore the channel mixing matrix */
            ret = avresample_set_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
            if (ret < 0)
                goto reinit_fail;
    
            /* re-open the AVAudioResampleContext */
            ret = avresample_open(avr);
            if (ret < 0)
                goto reinit_fail;
    
            /* restore buffered samples to the output FIFO */
            if (fifo_samples > 0) {
                ret = ff_audio_data_add_to_fifo(avr->out_fifo, fifo_buf, 0,
                                                fifo_samples);
                if (ret < 0)
                    goto reinit_fail;
                ff_audio_data_free(&fifo_buf);
            }
        }
        c = avr->resample;
        c->compensation_distance = compensation_distance;
        if (compensation_distance) {
            c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr *
                          (int64_t)sample_delta / compensation_distance;
        } else {
            c->dst_incr = c->ideal_dst_incr;
        }
        return 0;
    
    reinit_fail:
        ff_audio_data_free(&fifo_buf);
        return ret;
    }
    
    static int resample(ResampleContext *c, int16_t *dst, const int16_t *src,
                        int *consumed, int src_size, int dst_size, int update_ctx)
    {
        int dst_index, i;
        int index         = c->index;
        int frac          = c->frac;
        int dst_incr_frac = c->dst_incr % c->src_incr;
        int dst_incr      = c->dst_incr / c->src_incr;
        int compensation_distance = c->compensation_distance;
    
        if (!dst != !src)
            return AVERROR(EINVAL);
    
        if (compensation_distance == 0 && c->filter_length == 1 &&
            c->phase_shift == 0) {
            int64_t index2 = ((int64_t)index) << 32;
            int64_t incr   = (1LL << 32) * c->dst_incr / c->src_incr;
            dst_size       = FFMIN(dst_size,
                                   (src_size-1-index) * (int64_t)c->src_incr /
                                   c->dst_incr);
    
            if (dst) {
                for(dst_index = 0; dst_index < dst_size; dst_index++) {
                    dst[dst_index] = src[index2 >> 32];
                    index2 += incr;
                }
            } else {
                dst_index = dst_size;
            }
            index += dst_index * dst_incr;
            index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
            frac   = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
        } else {
            for (dst_index = 0; dst_index < dst_size; dst_index++) {
                FELEM *filter = c->filter_bank +
                                c->filter_length * (index & c->phase_mask);
                int sample_index = index >> c->phase_shift;
    
                if (!dst && (sample_index + c->filter_length > src_size ||
                             -sample_index >= src_size))
                    break;
    
                if (dst) {
                    FELEM2 val = 0;
    
                    if (sample_index < 0) {
                        for (i = 0; i < c->filter_length; i++)
                            val += src[FFABS(sample_index + i) % src_size] *
                                   (FELEM2)filter[i];
                    } else if (sample_index + c->filter_length > src_size) {
                        break;
                    } else if (c->linear) {
                        FELEM2 v2 = 0;
                        for (i = 0; i < c->filter_length; i++) {
                            val += src[abs(sample_index + i)] * (FELEM2)filter[i];
                            v2  += src[abs(sample_index + i)] * (FELEM2)filter[i + c->filter_length];
                        }
                        val += (v2 - val) * (FELEML)frac / c->src_incr;
                    } else {
                        for (i = 0; i < c->filter_length; i++)
                            val += src[sample_index + i] * (FELEM2)filter[i];
                    }
    
    #ifdef CONFIG_RESAMPLE_FLT
                    dst[dst_index] = av_clip_int16(lrintf(val));
    #else
                    val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
                    dst[dst_index] = av_clip_int16(val);
    #endif
                }
    
                frac  += dst_incr_frac;
                index += dst_incr;
                if (frac >= c->src_incr) {
                    frac -= c->src_incr;
                    index++;
                }
                if (dst_index + 1 == compensation_distance) {
                    compensation_distance = 0;
                    dst_incr_frac = c->ideal_dst_incr % c->src_incr;
                    dst_incr      = c->ideal_dst_incr / c->src_incr;
                }
            }
        }
        if (consumed)
            *consumed = FFMAX(index, 0) >> c->phase_shift;
    
        if (update_ctx) {
            if (index >= 0)
                index &= c->phase_mask;
    
            if (compensation_distance) {
                compensation_distance -= dst_index;
                if (compensation_distance <= 0)
                    return AVERROR_BUG;
            }
            c->frac     = frac;
            c->index    = index;
            c->dst_incr = dst_incr_frac + c->src_incr*dst_incr;
            c->compensation_distance = compensation_distance;
        }
    
        return dst_index;
    }
    
    int ff_audio_resample(ResampleContext *c, AudioData *dst, AudioData *src,
                          int *consumed)
    {
        int ch, in_samples, in_leftover, out_samples = 0;
        int ret = AVERROR(EINVAL);
    
        in_samples  = src ? src->nb_samples : 0;
        in_leftover = c->buffer->nb_samples;
    
        /* add input samples to the internal buffer */
        if (src) {
            ret = ff_audio_data_combine(c->buffer, in_leftover, src, 0, in_samples);
            if (ret < 0)
                return ret;
        } else if (!in_leftover) {
            /* no remaining samples to flush */
            return 0;
        } else {
            /* TODO: pad buffer to flush completely */
        }
    
        /* calculate output size and reallocate output buffer if needed */
        /* TODO: try to calculate this without the dummy resample() run */
        if (!dst->read_only && dst->allow_realloc) {
            out_samples = resample(c, NULL, NULL, NULL, c->buffer->nb_samples,
                                   INT_MAX, 0);
            ret = ff_audio_data_realloc(dst, out_samples);
            if (ret < 0) {
                av_log(c->avr, AV_LOG_ERROR, "error reallocating output\n");
                return ret;
            }
        }
    
        /* resample each channel plane */
        for (ch = 0; ch < c->buffer->channels; ch++) {
            out_samples = resample(c, (int16_t *)dst->data[ch],
                                   (const int16_t *)c->buffer->data[ch], consumed,
                                   c->buffer->nb_samples, dst->allocated_samples,
                                   ch + 1 == c->buffer->channels);
        }
        if (out_samples < 0) {
            av_log(c->avr, AV_LOG_ERROR, "error during resampling\n");
            return out_samples;
        }
    
        /* drain consumed samples from the internal buffer */
        ff_audio_data_drain(c->buffer, *consumed);
    
        av_dlog(c->avr, "resampled %d in + %d leftover to %d out + %d leftover\n",
                in_samples, in_leftover, out_samples, c->buffer->nb_samples);
    
        dst->nb_samples = out_samples;
        return 0;
    }
    
    int avresample_get_delay(AVAudioResampleContext *avr)
    {
        if (!avr->resample_needed || !avr->resample)
            return 0;
    
        return avr->resample->buffer->nb_samples;
    }