Skip to content
Snippets Groups Projects
lls.c 3.56 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * linear least squares model
     *
     * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
     *
     * This library is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
     * This library is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with this library; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     */
    
    /**
     * @file lls.c
     * linear least squares model
     */
    
    #include <math.h>
    #include <string.h>
    
    #include "lls.h"
    
    #ifdef TEST
    #define av_log(a,b,...) printf(__VA_ARGS__)
    #endif
    
    void av_init_lls(LLSModel *m, int indep_count){
        memset(m, 0, sizeof(LLSModel));
    
        m->indep_count= indep_count;
    }
    
    void av_update_lls(LLSModel *m, double *var, double decay){
        int i,j;
    
        for(i=0; i<=m->indep_count; i++){
            for(j=i; j<=m->indep_count; j++){
                m->covariance[i][j] *= decay;
                m->covariance[i][j] += var[i]*var[j];
            }
        }
    }
    
    double av_solve_lls(LLSModel *m, double threshold){
        int i,j,k;
        double (*factor)[MAX_VARS+1]= &m->covariance[1][0];
        double (*covar )[MAX_VARS+1]= &m->covariance[1][1];
        double  *covar_y            =  m->covariance[0];
        double variance;
        int count= m->indep_count;
    
        for(i=0; i<count; i++){
            for(j=i; j<count; j++){
                double sum= covar[i][j];
    
                for(k=i-1; k>=0; k--)
                    sum -= factor[i][k]*factor[j][k];
    
                if(i==j){
                    if(sum < threshold)
                        sum= 1.0;
                    factor[i][i]= sqrt(sum);
                }else
                    factor[j][i]= sum / factor[i][i];
            }
        }
        for(i=0; i<count; i++){
            double sum= covar_y[i+1];
            for(k=i-1; k>=0; k--)
                sum -= factor[i][k]*m->coeff[k];
            m->coeff[i]= sum / factor[i][i];
        }
    
        for(i=count-1; i>=0; i--){
            double sum= m->coeff[i];
            for(k=i+1; k<count; k++)
                sum -= factor[k][i]*m->coeff[k];
            m->coeff[i]= sum / factor[i][i];
        }
    
        variance= covar_y[0];
        for(i=0; i<count; i++){
            double sum= m->coeff[i]*covar[i][i] - 2*covar_y[i+1];
            for(j=0; j<i; j++)
                sum += 2*m->coeff[j]*covar[j][i];
            variance += m->coeff[i]*sum;
        }
        return variance;
    }
    
    double av_evaluate_lls(LLSModel *m, double *param){
        int i;
        double out= 0;
    
        for(i=0; i<m->indep_count; i++)
            out+= param[i]*m->coeff[i];
    
        return out;
    }
    
    #ifdef TEST
    
    #include <stdlib.h>
    #include <stdio.h>
    
    int main(){
        LLSModel m;
        int i;
    
        av_init_lls(&m, 3);
    
        for(i=0; i<100; i++){
            double var[4];
            double eval, variance;
            var[1] = rand() / (double)RAND_MAX;
            var[2] = rand() / (double)RAND_MAX;
            var[3] = rand() / (double)RAND_MAX;
    
            var[2]= var[1] + var[3];
    
            var[0] = var[1] + var[2] + var[3] +  var[1]*var[2]/100;
    
            eval= av_evaluate_lls(&m, var+1);
            av_update_lls(&m, var, 0.99);
            variance= av_solve_lls(&m, 0.001);
            av_log(NULL, AV_LOG_DEBUG, "real:%f pred:%f var:%f coeffs:%f %f %f\n",
                var[0], eval, sqrt(variance / (i+1)),
                m.coeff[0], m.coeff[1], m.coeff[2]);
        }
        return 0;
    }
    
    #endif