Skip to content
Snippets Groups Projects
adpcmenc.c 27 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (c) 2001-2003 The ffmpeg Project
     *
    
     * This file is part of FFmpeg.
    
     * FFmpeg is free software; you can redistribute it and/or
    
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
    
     * FFmpeg is distributed in the hope that it will be useful,
    
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
    
     * License along with FFmpeg; if not, write to the Free Software
    
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include "avcodec.h"
    #include "get_bits.h"
    #include "put_bits.h"
    #include "bytestream.h"
    #include "adpcm.h"
    #include "adpcm_data.h"
    
    #include "internal.h"
    
    
    /**
     * @file
     * ADPCM encoders
     * First version by Francois Revol (revol@free.fr)
     * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
     *   by Mike Melanson (melanson@pcisys.net)
     *
    
     * See ADPCM decoder reference documents for codec information.
    
     */
    
    typedef struct TrellisPath {
        int nibble;
        int prev;
    } TrellisPath;
    
    typedef struct TrellisNode {
        uint32_t ssd;
        int path;
        int sample1;
        int sample2;
        int step;
    } TrellisNode;
    
    typedef struct ADPCMEncodeContext {
        ADPCMChannelStatus status[6];
        TrellisPath *paths;
        TrellisNode *node_buf;
        TrellisNode **nodep_buf;
        uint8_t *trellis_hash;
    } ADPCMEncodeContext;
    
    #define FREEZE_INTERVAL 128
    
    
    static av_cold int adpcm_encode_close(AVCodecContext *avctx);
    
    
    static av_cold int adpcm_encode_init(AVCodecContext *avctx)
    {
        ADPCMEncodeContext *s = avctx->priv_data;
        uint8_t *extradata;
        int i;
    
        int ret = AVERROR(ENOMEM);
    
        if (avctx->channels > 2) {
            av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
            return AVERROR(EINVAL);
        }
    
        if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
    
            av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
    
            return AVERROR(EINVAL);
    
            int frontier  = 1 << avctx->trellis;
    
            int max_paths =  frontier * FREEZE_INTERVAL;
    
            FF_ALLOC_OR_GOTO(avctx, s->paths,
                             max_paths * sizeof(*s->paths), error);
            FF_ALLOC_OR_GOTO(avctx, s->node_buf,
                             2 * frontier * sizeof(*s->node_buf),  error);
            FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
                             2 * frontier * sizeof(*s->nodep_buf), error);
            FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
                             65536 * sizeof(*s->trellis_hash), error);
    
        avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
    
    
        switch (avctx->codec->id) {
    
        case AV_CODEC_ID_ADPCM_IMA_WAV:
    
            /* each 16 bits sample gives one nibble
               and we have 4 bytes per channel overhead */
            avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
                                (4 * avctx->channels) + 1;
            /* seems frame_size isn't taken into account...
               have to buffer the samples :-( */
    
            avctx->block_align = BLKSIZE;
    
            avctx->bits_per_coded_sample = 4;
    
        case AV_CODEC_ID_ADPCM_IMA_QT:
    
            avctx->frame_size  = 64;
    
            avctx->block_align = 34 * avctx->channels;
            break;
    
        case AV_CODEC_ID_ADPCM_MS:
    
            /* each 16 bits sample gives one nibble
               and we have 7 bytes per channel overhead */
    
            avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
    
            avctx->bits_per_coded_sample = 4;
    
            avctx->block_align    = BLKSIZE;
    
            if (!(avctx->extradata = av_malloc(32 + FF_INPUT_BUFFER_PADDING_SIZE)))
                goto error;
    
            extradata = avctx->extradata;
    
            bytestream_put_le16(&extradata, avctx->frame_size);
            bytestream_put_le16(&extradata, 7); /* wNumCoef */
            for (i = 0; i < 7; i++) {
                bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
                bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
            }
            break;
    
        case AV_CODEC_ID_ADPCM_YAMAHA:
    
            avctx->frame_size  = BLKSIZE * 2 / avctx->channels;
    
            avctx->block_align = BLKSIZE;
            break;
    
        case AV_CODEC_ID_ADPCM_SWF:
    
            if (avctx->sample_rate != 11025 &&
                avctx->sample_rate != 22050 &&
                avctx->sample_rate != 44100) {
    
                av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
                       "22050 or 44100\n");
    
                ret = AVERROR(EINVAL);
    
                goto error;
            }
            avctx->frame_size = 512 * (avctx->sample_rate / 11025);
            break;
        default:
    
            ret = AVERROR(EINVAL);
    
    #if FF_API_OLD_ENCODE_AUDIO
    
        if (!(avctx->coded_frame = avcodec_alloc_frame()))
    
        adpcm_encode_close(avctx);
    
    }
    
    static av_cold int adpcm_encode_close(AVCodecContext *avctx)
    {
        ADPCMEncodeContext *s = avctx->priv_data;
    
    #if FF_API_OLD_ENCODE_AUDIO
    
        av_freep(&avctx->coded_frame);
    
        av_freep(&s->paths);
        av_freep(&s->node_buf);
        av_freep(&s->nodep_buf);
        av_freep(&s->trellis_hash);
    
        return 0;
    }
    
    
    
    static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
                                                    int16_t sample)
    
        int delta  = sample - c->prev_sample;
        int nibble = FFMIN(7, abs(delta) * 4 /
                           ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
        c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
                            ff_adpcm_yamaha_difflookup[nibble]) / 8);
    
        c->prev_sample = av_clip_int16(c->prev_sample);
    
        c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
    
    static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
                                                       int16_t sample)
    
        int delta  = sample - c->prev_sample;
    
        int diff, step = ff_adpcm_step_table[c->step_index];
        int nibble = 8*(delta < 0);
    
        delta= abs(delta);
        diff = delta + (step >> 3);
    
        if (delta >= step) {
            nibble |= 4;
    
        }
        step >>= 1;
        if (delta >= step) {
            nibble |= 2;
    
        }
        step >>= 1;
        if (delta >= step) {
            nibble |= 1;
    
        }
        diff -= delta;
    
        if (nibble & 8)
            c->prev_sample -= diff;
        else
            c->prev_sample += diff;
    
        c->prev_sample = av_clip_int16(c->prev_sample);
    
        c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
    
    static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
                                                   int16_t sample)
    
        predictor = (((c->sample1) * (c->coeff1)) +
                    (( c->sample2) * (c->coeff2))) / 64;
    
        nibble = sample - predictor;
        if (nibble >= 0)
            bias =  c->idelta / 2;
        else
            bias = -c->idelta / 2;
    
        nibble = (nibble + bias) / c->idelta;
        nibble = av_clip(nibble, -8, 7) & 0x0F;
    
        predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
    
    
        c->sample2 = c->sample1;
        c->sample1 = av_clip_int16(predictor);
    
    
        c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
    
        if (c->idelta < 16)
            c->idelta = 16;
    
    static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
                                                       int16_t sample)
    
        if (!c->step) {
    
            c->step      = 127;
    
        nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
    
    
        c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
        c->predictor = av_clip_int16(c->predictor);
        c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
        c->step = av_clip(c->step, 127, 24567);
    
        return nibble;
    }
    
    
    static void adpcm_compress_trellis(AVCodecContext *avctx,
                                       const int16_t *samples, uint8_t *dst,
    
                                       ADPCMChannelStatus *c, int n, int stride)
    
    {
        //FIXME 6% faster if frontier is a compile-time constant
        ADPCMEncodeContext *s = avctx->priv_data;
        const int frontier = 1 << avctx->trellis;
    
        const int version  = avctx->codec->id;
        TrellisPath *paths       = s->paths, *p;
        TrellisNode *node_buf    = s->node_buf;
        TrellisNode **nodep_buf  = s->nodep_buf;
        TrellisNode **nodes      = nodep_buf; // nodes[] is always sorted by .ssd
    
        TrellisNode **nodes_next = nodep_buf + frontier;
        int pathn = 0, froze = -1, i, j, k, generation = 0;
        uint8_t *hash = s->trellis_hash;
        memset(hash, 0xff, 65536 * sizeof(*hash));
    
        memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
    
        nodes[0]          = node_buf + frontier;
        nodes[0]->ssd     = 0;
        nodes[0]->path    = 0;
        nodes[0]->step    = c->step_index;
    
        nodes[0]->sample1 = c->sample1;
        nodes[0]->sample2 = c->sample2;
    
        if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
            version == AV_CODEC_ID_ADPCM_IMA_QT  ||
            version == AV_CODEC_ID_ADPCM_SWF)
    
            nodes[0]->sample1 = c->prev_sample;
    
        if (version == AV_CODEC_ID_ADPCM_MS)
    
        if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
    
            if (c->step == 0) {
                nodes[0]->step    = 127;
    
                nodes[0]->step    = c->step;
    
        for (i = 0; i < n; i++) {
    
            TrellisNode *t = node_buf + frontier*(i&1);
            TrellisNode **u;
    
            int sample   = samples[i * stride];
    
            memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
            for (j = 0; j < frontier && nodes[j]; j++) {
                // higher j have higher ssd already, so they're likely
                // to yield a suboptimal next sample too
                const int range = (j < frontier / 2) ? 1 : 0;
                const int step  = nodes[j]->step;
    
                if (version == AV_CODEC_ID_ADPCM_MS) {
    
                    const int predictor = ((nodes[j]->sample1 * c->coeff1) +
                                           (nodes[j]->sample2 * c->coeff2)) / 64;
                    const int div  = (sample - predictor) / step;
    
                    const int nmin = av_clip(div-range, -8, 6);
                    const int nmax = av_clip(div+range, -7, 7);
    
                    for (nidx = nmin; nidx <= nmax; nidx++) {
    
                        const int nibble = nidx & 0xf;
    
                        int dec_sample   = predictor + nidx * step;
    
    #define STORE_NODE(NAME, STEP_INDEX)\
                        int d;\
                        uint32_t ssd;\
                        int pos;\
                        TrellisNode *u;\
                        uint8_t *h;\
                        dec_sample = av_clip_int16(dec_sample);\
                        d = sample - dec_sample;\
                        ssd = nodes[j]->ssd + d*d;\
                        /* Check for wraparound, skip such samples completely. \
                         * Note, changing ssd to a 64 bit variable would be \
                         * simpler, avoiding this check, but it's slower on \
                         * x86 32 bit at the moment. */\
                        if (ssd < nodes[j]->ssd)\
                            goto next_##NAME;\
                        /* Collapse any two states with the same previous sample value. \
                         * One could also distinguish states by step and by 2nd to last
                         * sample, but the effects of that are negligible.
                         * Since nodes in the previous generation are iterated
                         * through a heap, they're roughly ordered from better to
                         * worse, but not strictly ordered. Therefore, an earlier
                         * node with the same sample value is better in most cases
                         * (and thus the current is skipped), but not strictly
                         * in all cases. Only skipping samples where ssd >=
                         * ssd of the earlier node with the same sample gives
                         * slightly worse quality, though, for some reason. */ \
                        h = &hash[(uint16_t) dec_sample];\
                        if (*h == generation)\
                            goto next_##NAME;\
                        if (heap_pos < frontier) {\
                            pos = heap_pos++;\
                        } else {\
                            /* Try to replace one of the leaf nodes with the new \
                             * one, but try a different slot each time. */\
    
                            pos = (frontier >> 1) +\
                                  (heap_pos & ((frontier >> 1) - 1));\
    
                            if (ssd > nodes_next[pos]->ssd)\
                                goto next_##NAME;\
                            heap_pos++;\
                        }\
                        *h = generation;\
    
                        u  = nodes_next[pos];\
                        if (!u) {\
    
                            av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
    
                            u = t++;\
                            nodes_next[pos] = u;\
                            u->path = pathn++;\
                        }\
    
                        u->ssd  = ssd;\
    
                        u->step = STEP_INDEX;\
                        u->sample2 = nodes[j]->sample1;\
                        u->sample1 = dec_sample;\
                        paths[u->path].nibble = nibble;\
    
                        paths[u->path].prev   = nodes[j]->path;\
    
                        /* Sift the newly inserted node up in the heap to \
                         * restore the heap property. */\
                        while (pos > 0) {\
                            int parent = (pos - 1) >> 1;\
                            if (nodes_next[parent]->ssd <= ssd)\
                                break;\
                            FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
                            pos = parent;\
                        }\
                        next_##NAME:;
    
                        STORE_NODE(ms, FFMAX(16,
                                   (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
    
                } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
                           version == AV_CODEC_ID_ADPCM_IMA_QT  ||
                           version == AV_CODEC_ID_ADPCM_SWF) {
    
    #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
                    const int predictor = nodes[j]->sample1;\
                    const int div = (sample - predictor) * 4 / STEP_TABLE;\
    
                    int nmin = av_clip(div - range, -7, 6);\
                    int nmax = av_clip(div + range, -6, 7);\
                    if (nmin <= 0)\
                        nmin--; /* distinguish -0 from +0 */\
                    if (nmax < 0)\
                        nmax--;\
                    for (nidx = nmin; nidx <= nmax; nidx++) {\
                        const int nibble = nidx < 0 ? 7 - nidx : nidx;\
                        int dec_sample = predictor +\
                                        (STEP_TABLE *\
                                         ff_adpcm_yamaha_difflookup[nibble]) / 8;\
    
                        STORE_NODE(NAME, STEP_INDEX);\
                    }
    
                    LOOP_NODES(ima, ff_adpcm_step_table[step],
                               av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
    
                } else { //AV_CODEC_ID_ADPCM_YAMAHA
    
                    LOOP_NODES(yamaha, step,
                               av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
                                       127, 24567));
    
    #undef LOOP_NODES
    #undef STORE_NODE
                }
            }
    
            u = nodes;
            nodes = nodes_next;
            nodes_next = u;
    
            generation++;
            if (generation == 255) {
                memset(hash, 0xff, 65536 * sizeof(*hash));
                generation = 0;
            }
    
            // prevent overflow
    
            if (nodes[0]->ssd > (1 << 28)) {
                for (j = 1; j < frontier && nodes[j]; j++)
    
                    nodes[j]->ssd -= nodes[0]->ssd;
                nodes[0]->ssd = 0;
            }
    
            // merge old paths to save memory
    
            if (i == froze + FREEZE_INTERVAL) {
    
                for (k = i; k > froze; k--) {
    
                    dst[k] = p->nibble;
                    p = &paths[p->prev];
                }
                froze = i;
                pathn = 0;
                // other nodes might use paths that don't coincide with the frozen one.
                // checking which nodes do so is too slow, so just kill them all.
                // this also slightly improves quality, but I don't know why.
    
                memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
    
        for (i = n - 1; i > froze; i--) {
    
            dst[i] = p->nibble;
            p = &paths[p->prev];
        }
    
    
        c->predictor  = nodes[0]->sample1;
        c->sample1    = nodes[0]->sample1;
        c->sample2    = nodes[0]->sample2;
    
        c->step_index = nodes[0]->step;
    
        c->step       = nodes[0]->step;
        c->idelta     = nodes[0]->step;
    
    static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                                  const AVFrame *frame, int *got_packet_ptr)
    
        int n, i, ch, st, pkt_size, ret;
    
        const int16_t *samples;
    
        ADPCMEncodeContext *c = avctx->priv_data;
        uint8_t *buf;
    
    
        samples = (const int16_t *)frame->data[0];
    
        samples_p = (int16_t **)frame->extended_data;
    
        st = avctx->channels == 2;
    
        if (avctx->codec_id == AV_CODEC_ID_ADPCM_SWF)
    
            pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
        else
            pkt_size = avctx->block_align;
    
        if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size)))
    
            return ret;
        dst = avpkt->data;
    
        case AV_CODEC_ID_ADPCM_IMA_WAV:
    
    
            blocks = (frame->nb_samples - 1) / 8;
    
            for (ch = 0; ch < avctx->channels; ch++) {
                ADPCMChannelStatus *status = &c->status[ch];
    
                status->prev_sample = samples_p[ch][0];
    
                /* status->step_index = 0;
                   XXX: not sure how to init the state machine */
                bytestream_put_le16(&dst, status->prev_sample);
                *dst++ = status->step_index;
                *dst++ = 0; /* unknown */
    
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
    
            if (avctx->trellis > 0) {
    
                FF_ALLOC_OR_GOTO(avctx, buf, avctx->channels * blocks * 8, error);
                for (ch = 0; ch < avctx->channels; ch++) {
    
                    adpcm_compress_trellis(avctx, &samples_p[ch][1],
    
                                           buf + ch * blocks * 8, &c->status[ch],
    
                }
                for (i = 0; i < blocks; i++) {
                    for (ch = 0; ch < avctx->channels; ch++) {
                        uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
                        for (j = 0; j < 8; j += 2)
                            *dst++ = buf1[j] | (buf1[j + 1] << 4);
    
                }
                av_free(buf);
            } else {
    
                for (i = 0; i < blocks; i++) {
                    for (ch = 0; ch < avctx->channels; ch++) {
                        ADPCMChannelStatus *status = &c->status[ch];
    
                        const int16_t *smp = &samples_p[ch][1 + i * 8];
    
                        for (j = 0; j < 8; j += 2) {
    
                            uint8_t v = adpcm_ima_compress_sample(status, smp[j    ]);
                            v        |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
    
        case AV_CODEC_ID_ADPCM_IMA_QT:
    
            init_put_bits(&pb, dst, pkt_size * 8);
    
            for (ch = 0; ch < avctx->channels; ch++) {
    
                ADPCMChannelStatus *status = &c->status[ch];
                put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
                put_bits(&pb, 7,  status->step_index);
    
                if (avctx->trellis > 0) {
    
                    adpcm_compress_trellis(avctx, &samples_p[ch][1], buf, status,
                                           64, 1);
    
                    for (i = 0; i < 64; i++)
                        put_bits(&pb, 4, buf[i ^ 1]);
    
                    for (i = 0; i < 64; i += 2) {
    
                        t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i    ]);
                        t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
    
                        put_bits(&pb, 4, t2);
                        put_bits(&pb, 4, t1);
                    }
                }
            }
    
            flush_put_bits(&pb);
            break;
        }
    
        case AV_CODEC_ID_ADPCM_SWF:
    
            init_put_bits(&pb, dst, pkt_size * 8);
    
            n = frame->nb_samples - 1;
    
            // store AdpcmCodeSize
            put_bits(&pb, 2, 2);    // set 4-bit flash adpcm format
    
            // init the encoder state
            for (i = 0; i < avctx->channels; i++) {
                // clip step so it fits 6 bits
                c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
    
                put_sbits(&pb, 16, samples[i]);
                put_bits(&pb, 6, c->status[i].step_index);
    
                c->status[i].prev_sample = samples[i];
    
            if (avctx->trellis > 0) {
                FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
    
                adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
    
                                       &c->status[0], n, avctx->channels);
    
                    adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
    
                                           buf + n, &c->status[1], n,
                                           avctx->channels);
    
                for (i = 0; i < n; i++) {
    
                    put_bits(&pb, 4, buf[i]);
                    if (avctx->channels == 2)
    
                        put_bits(&pb, 4, buf[n + i]);
    
                for (i = 1; i < frame->nb_samples; i++) {
    
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
                             samples[avctx->channels * i]));
    
                        put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
                                 samples[2 * i + 1]));
    
        case AV_CODEC_ID_ADPCM_MS:
    
            for (i = 0; i < avctx->channels; i++) {
                int predictor = 0;
    
                *dst++ = predictor;
                c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
                c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
            }
    
            for (i = 0; i < avctx->channels; i++) {
    
                if (c->status[i].idelta < 16)
                    c->status[i].idelta = 16;
                bytestream_put_le16(&dst, c->status[i].idelta);
            }
    
            for (i = 0; i < avctx->channels; i++)
    
                c->status[i].sample2= *samples++;
    
            for (i = 0; i < avctx->channels; i++) {
                c->status[i].sample1 = *samples++;
    
                bytestream_put_le16(&dst, c->status[i].sample1);
            }
    
            for (i = 0; i < avctx->channels; i++)
    
                bytestream_put_le16(&dst, c->status[i].sample2);
    
    
            if (avctx->trellis > 0) {
    
                n = avctx->block_align - 7 * avctx->channels;
    
                FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
                if (avctx->channels == 1) {
    
                    adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
                                           avctx->channels);
    
                    for (i = 0; i < n; i += 2)
                        *dst++ = (buf[i] << 4) | buf[i + 1];
    
                    adpcm_compress_trellis(avctx, samples,     buf,
                                           &c->status[0], n, avctx->channels);
                    adpcm_compress_trellis(avctx, samples + 1, buf + n,
                                           &c->status[1], n, avctx->channels);
    
                    for (i = 0; i < n; i++)
                        *dst++ = (buf[i] << 4) | buf[n + i];
    
            } else {
                for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
                    int nibble;
                    nibble  = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
                    nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
                    *dst++  = nibble;
                }
    
        case AV_CODEC_ID_ADPCM_YAMAHA:
    
            n = frame->nb_samples / 2;
    
            if (avctx->trellis > 0) {
                FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
    
                if (avctx->channels == 1) {
    
                    adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
                                           avctx->channels);
    
                    for (i = 0; i < n; i += 2)
                        *dst++ = buf[i] | (buf[i + 1] << 4);
    
                    adpcm_compress_trellis(avctx, samples,     buf,
                                           &c->status[0], n, avctx->channels);
                    adpcm_compress_trellis(avctx, samples + 1, buf + n,
                                           &c->status[1], n, avctx->channels);
    
                    for (i = 0; i < n; i++)
                        *dst++ = buf[i] | (buf[n + i] << 4);
    
                for (n *= avctx->channels; n > 0; n--) {
    
                    int nibble;
                    nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
                    nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
    
                    *dst++  = nibble;
    
            return AVERROR(EINVAL);
    
    
        avpkt->size = pkt_size;
        *got_packet_ptr = 1;
        return 0;
    
    error:
        return AVERROR(ENOMEM);
    
    static const enum AVSampleFormat sample_fmts[] = {
        AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
    };
    
    static const enum AVSampleFormat sample_fmts_p[] = {
        AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
    };
    
    #define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_) \
    
    AVCodec ff_ ## name_ ## _encoder = {                        \
        .name           = #name_,                               \
        .type           = AVMEDIA_TYPE_AUDIO,                   \
        .id             = id_,                                  \
        .priv_data_size = sizeof(ADPCMEncodeContext),           \
        .init           = adpcm_encode_init,                    \
    
        .encode2        = adpcm_encode_frame,                   \
    
        .close          = adpcm_encode_close,                   \
    
        .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
    
    ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT,  adpcm_ima_qt,  sample_fmts_p, "ADPCM IMA QuickTime");
    ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, "ADPCM IMA WAV");
    ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS,      adpcm_ms,      sample_fmts,   "ADPCM Microsoft");
    ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF,     adpcm_swf,     sample_fmts,   "ADPCM Shockwave Flash");
    ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA,  adpcm_yamaha,  sample_fmts,   "ADPCM Yamaha");