Newer
Older
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Fabrice Bellard
committed
//#define DEBUG
Fabrice Bellard
committed
#include "mpegaudio.h"
Fabrice Bellard
committed
* TODO:
* - in low precision mode, use more 16 bit multiplies in synth filter
* - test lsf / mpeg25 extensively.
Fabrice Bellard
committed
/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
audio decoder */
Fabrice Bellard
committed
#ifdef CONFIG_MPEGAUDIO_HP
#define USE_HIGHPRECISION
#endif
Fabrice Bellard
committed
#ifdef USE_HIGHPRECISION
#define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
#define WFRAC_BITS 16 /* fractional bits for window */
#else
#define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
#define WFRAC_BITS 14 /* fractional bits for window */
#endif
#define FRAC_ONE (1 << FRAC_BITS)
#define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
#define MUL64(a,b) ((INT64)(a) * (INT64)(b))
#define FIX(a) ((int)((a) * FRAC_ONE))
/* WARNING: only correct for posititive numbers */
#define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
#if FRAC_BITS <= 15
typedef INT16 MPA_INT;
#else
typedef INT32 MPA_INT;
#endif
/****************/
#define HEADER_SIZE 4
#define BACKSTEP_SIZE 512
typedef struct MPADecodeContext {
Fabrice Bellard
committed
UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
int inbuf_index;
UINT8 *inbuf_ptr, *inbuf;
int frame_size;
Fabrice Bellard
committed
int free_format_frame_size; /* frame size in case of free format
(zero if currently unknown) */
/* next header (used in free format parsing) */
UINT32 free_format_next_header;
int error_protection;
int layer;
int sample_rate;
Fabrice Bellard
committed
int sample_rate_index; /* between 0 and 8 */
int bit_rate;
int old_frame_size;
GetBitContext gb;
Fabrice Bellard
committed
int nb_channels;
int mode;
int mode_ext;
int lsf;
MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
int synth_buf_offset[MPA_MAX_CHANNELS];
INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
#ifdef DEBUG
int frame_count;
#endif
Fabrice Bellard
committed
/* layer 3 "granule" */
typedef struct GranuleDef {
UINT8 scfsi;
int part2_3_length;
int big_values;
int global_gain;
int scalefac_compress;
UINT8 block_type;
UINT8 switch_point;
int table_select[3];
int subblock_gain[3];
UINT8 scalefac_scale;
UINT8 count1table_select;
int region_size[3]; /* number of huffman codes in each region */
int preflag;
int short_start, long_end; /* long/short band indexes */
UINT8 scale_factors[40];
INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */
} GranuleDef;
Fabrice Bellard
committed
#define MODE_EXT_MS_STEREO 2
#define MODE_EXT_I_STEREO 1
/* layer 3 huffman tables */
typedef struct HuffTable {
int xsize;
const UINT8 *bits;
const UINT16 *codes;
} HuffTable;
#include "mpegaudiodectab.h"
/* vlc structure for decoding layer 3 huffman tables */
static VLC huff_vlc[16];
static UINT8 *huff_code_table[16];
static VLC huff_quad_vlc[2];
/* computed from band_size_long */
static UINT16 band_index_long[9][23];
/* XXX: free when all decoders are closed */
#define TABLE_4_3_SIZE (8191 + 16)
Fabrice Bellard
committed
#if FRAC_BITS <= 15
static UINT16 *table_4_3_value;
#else
static UINT32 *table_4_3_value;
#endif
/* intensity stereo coef table */
static INT32 is_table[2][16];
static INT32 is_table_lsf[2][2][16];
static INT32 csa_table[8][2];
static INT32 mdct_win[8][36];
/* lower 2 bits: modulo 3, higher bits: shift */
static UINT16 scale_factor_modshift[64];
/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
static INT32 scale_factor_mult[15][3];
/* mult table for layer 2 group quantization */
#define SCALE_GEN(v) \
{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
static INT32 scale_factor_mult2[3][3] = {
Fabrice Bellard
committed
SCALE_GEN(4.0 / 3.0), /* 3 steps */
SCALE_GEN(4.0 / 5.0), /* 5 steps */
SCALE_GEN(4.0 / 9.0), /* 9 steps */
Fabrice Bellard
committed
};
/* 2^(n/4) */
static UINT32 scale_factor_mult3[4] = {
FIXR(1.0),
FIXR(1.18920711500272106671),
FIXR(1.41421356237309504880),
FIXR(1.68179283050742908605),
Fabrice Bellard
committed
static MPA_INT window[512];
/* layer 1 unscaling */
/* n = number of bits of the mantissa minus 1 */
static inline int l1_unscale(int n, int mant, int scale_factor)
{
int shift, mod;
INT64 val;
shift = scale_factor_modshift[scale_factor];
mod = shift & 3;
shift >>= 2;
val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
shift += n;
Fabrice Bellard
committed
/* NOTE: at this point, 1 <= shift >= 21 + 15 */
return (int)((val + (1LL << (shift - 1))) >> shift);
Fabrice Bellard
committed
}
static inline int l2_unscale_group(int steps, int mant, int scale_factor)
{
int shift, mod, val;
shift = scale_factor_modshift[scale_factor];
mod = shift & 3;
shift >>= 2;
Fabrice Bellard
committed
val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
/* NOTE: at this point, 0 <= shift <= 21 */
if (shift > 0)
val = (val + (1 << (shift - 1))) >> shift;
return val;
Fabrice Bellard
committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
}
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
static inline int l3_unscale(int value, int exponent)
{
#if FRAC_BITS <= 15
unsigned int m;
#else
UINT64 m;
#endif
int e;
e = table_4_3_exp[value];
e += (exponent >> 2);
e = FRAC_BITS - e;
#if FRAC_BITS <= 15
if (e > 31)
e = 31;
#endif
m = table_4_3_value[value];
#if FRAC_BITS <= 15
m = (m * scale_factor_mult3[exponent & 3]);
m = (m + (1 << (e-1))) >> e;
return m;
#else
m = MUL64(m, scale_factor_mult3[exponent & 3]);
m = (m + (UINT64_C(1) << (e-1))) >> e;
return m;
#endif
}
Fabrice Bellard
committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/* all integer n^(4/3) computation code */
#define DEV_ORDER 13
#define POW_FRAC_BITS 24
#define POW_FRAC_ONE (1 << POW_FRAC_BITS)
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
#define POW_MULL(a,b) (((INT64)(a) * (INT64)(b)) >> POW_FRAC_BITS)
static int dev_4_3_coefs[DEV_ORDER];
static int pow_mult3[3] = {
POW_FIX(1.0),
POW_FIX(1.25992104989487316476),
POW_FIX(1.58740105196819947474),
};
static void int_pow_init(void)
{
int i, a;
a = POW_FIX(1.0);
for(i=0;i<DEV_ORDER;i++) {
a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
dev_4_3_coefs[i] = a;
}
}
/* return the mantissa and the binary exponent */
static int int_pow(int i, int *exp_ptr)
{
int e, er, eq, j;
int a, a1;
/* renormalize */
a = i;
e = POW_FRAC_BITS;
while (a < (1 << (POW_FRAC_BITS - 1))) {
a = a << 1;
e--;
}
a -= (1 << POW_FRAC_BITS);
a1 = 0;
for(j = DEV_ORDER - 1; j >= 0; j--)
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
a = (1 << POW_FRAC_BITS) + a1;
/* exponent compute (exact) */
e = e * 4;
er = e % 3;
eq = e / 3;
a = POW_MULL(a, pow_mult3[er]);
while (a >= 2 * POW_FRAC_ONE) {
a = a >> 1;
eq++;
}
/* convert to float */
while (a < POW_FRAC_ONE) {
a = a << 1;
eq--;
}
Fabrice Bellard
committed
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
Fabrice Bellard
committed
#if POW_FRAC_BITS > FRAC_BITS
Fabrice Bellard
committed
a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
/* correct overflow */
if (a >= 2 * (1 << FRAC_BITS)) {
a = a >> 1;
eq++;
}
#endif
Fabrice Bellard
committed
*exp_ptr = eq;
return a;
}
static int decode_init(AVCodecContext * avctx)
{
MPADecodeContext *s = avctx->priv_data;
static int init;
Fabrice Bellard
committed
int i, j, k;
Fabrice Bellard
committed
/* scale factors table for layer 1/2 */
for(i=0;i<64;i++) {
int shift, mod;
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
Fabrice Bellard
committed
shift = (i / 3);
Fabrice Bellard
committed
mod = i % 3;
scale_factor_modshift[i] = mod | (shift << 2);
}
/* scale factor multiply for layer 1 */
for(i=0;i<15;i++) {
int n, norm;
n = i + 2;
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
Fabrice Bellard
committed
scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
Fabrice Bellard
committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
dprintf("%d: norm=%x s=%x %x %x\n",
i, norm,
scale_factor_mult[i][0],
scale_factor_mult[i][1],
scale_factor_mult[i][2]);
}
/* window */
/* max = 18760, max sum over all 16 coefs : 44736 */
for(i=0;i<257;i++) {
int v;
v = mpa_enwindow[i];
#if WFRAC_BITS < 16
v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
#endif
window[i] = v;
if ((i & 63) != 0)
v = -v;
if (i != 0)
window[512 - i] = v;
}
/* huffman decode tables */
huff_code_table[0] = NULL;
for(i=1;i<16;i++) {
const HuffTable *h = &mpa_huff_tables[i];
int xsize, n, x, y;
UINT8 *code_table;
xsize = h->xsize;
n = xsize * xsize;
/* XXX: fail test */
init_vlc(&huff_vlc[i], 8, n,
h->bits, 1, 1, h->codes, 2, 2);
code_table = av_mallocz(n);
j = 0;
for(x=0;x<xsize;x++) {
for(y=0;y<xsize;y++)
code_table[j++] = (x << 4) | y;
}
huff_code_table[i] = code_table;
}
for(i=0;i<2;i++) {
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
}
for(i=0;i<9;i++) {
k = 0;
for(j=0;j<22;j++) {
band_index_long[i][j] = k;
k += band_size_long[i][j];
}
band_index_long[i][22] = k;
}
/* compute n ^ (4/3) and store it in mantissa/exp format */
table_4_3_exp = av_mallocz(TABLE_4_3_SIZE *
sizeof(table_4_3_exp[0]));
if (!table_4_3_exp)
return -1;
table_4_3_value = av_mallocz(TABLE_4_3_SIZE *
sizeof(table_4_3_value[0]));
if (!table_4_3_value) {
Fabrice Bellard
committed
av_free(table_4_3_exp);
Fabrice Bellard
committed
return -1;
}
Fabrice Bellard
committed
int_pow_init();
Fabrice Bellard
committed
for(i=1;i<TABLE_4_3_SIZE;i++) {
int e, m;
Fabrice Bellard
committed
m = int_pow(i, &e);
#if 0
/* test code */
{
double f, fm;
int e1, m1;
f = pow((double)i, 4.0 / 3.0);
fm = frexp(f, &e1);
m1 = FIXR(2 * fm);
#if FRAC_BITS <= 15
Fabrice Bellard
committed
if ((unsigned short)m1 != m1) {
m1 = m1 >> 1;
e1++;
}
Fabrice Bellard
committed
#endif
e1--;
if (m != m1 || e != e1) {
printf("%4d: m=%x m1=%x e=%d e1=%d\n",
i, m, m1, e, e1);
}
}
Fabrice Bellard
committed
#endif
/* normalized to FRAC_BITS */
table_4_3_value[i] = m;
Fabrice Bellard
committed
table_4_3_exp[i] = e;
Fabrice Bellard
committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
}
for(i=0;i<7;i++) {
float f;
int v;
if (i != 6) {
f = tan((double)i * M_PI / 12.0);
v = FIXR(f / (1.0 + f));
} else {
v = FIXR(1.0);
}
is_table[0][i] = v;
is_table[1][6 - i] = v;
}
/* invalid values */
for(i=7;i<16;i++)
is_table[0][i] = is_table[1][i] = 0.0;
for(i=0;i<16;i++) {
double f;
int e, k;
for(j=0;j<2;j++) {
e = -(j + 1) * ((i + 1) >> 1);
f = pow(2.0, e / 4.0);
k = i & 1;
is_table_lsf[j][k ^ 1][i] = FIXR(f);
is_table_lsf[j][k][i] = FIXR(1.0);
dprintf("is_table_lsf %d %d: %x %x\n",
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
}
}
for(i=0;i<8;i++) {
float ci, cs, ca;
ci = ci_table[i];
cs = 1.0 / sqrt(1.0 + ci * ci);
ca = cs * ci;
csa_table[i][0] = FIX(cs);
csa_table[i][1] = FIX(ca);
}
/* compute mdct windows */
for(i=0;i<36;i++) {
int v;
v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
mdct_win[0][i] = v;
mdct_win[1][i] = v;
mdct_win[3][i] = v;
}
for(i=0;i<6;i++) {
mdct_win[1][18 + i] = FIXR(1.0);
mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
mdct_win[1][30 + i] = FIXR(0.0);
mdct_win[3][i] = FIXR(0.0);
mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
mdct_win[3][12 + i] = FIXR(1.0);
}
for(i=0;i<12;i++)
mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
/* NOTE: we do frequency inversion adter the MDCT by changing
the sign of the right window coefs */
for(j=0;j<4;j++) {
for(i=0;i<36;i+=2) {
mdct_win[j + 4][i] = mdct_win[j][i];
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
}
}
#if defined(DEBUG)
for(j=0;j<8;j++) {
printf("win%d=\n", j);
for(i=0;i<36;i++)
printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
printf("\n");
}
#endif
init = 1;
}
s->inbuf_index = 0;
s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
s->inbuf_ptr = s->inbuf;
Fabrice Bellard
committed
#ifdef DEBUG
s->frame_count = 0;
#endif
Fabrice Bellard
committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */;
/* cos(i*pi/64) */
#define COS0_0 FIXR(0.50060299823519630134)
#define COS0_1 FIXR(0.50547095989754365998)
#define COS0_2 FIXR(0.51544730992262454697)
#define COS0_3 FIXR(0.53104259108978417447)
#define COS0_4 FIXR(0.55310389603444452782)
#define COS0_5 FIXR(0.58293496820613387367)
#define COS0_6 FIXR(0.62250412303566481615)
#define COS0_7 FIXR(0.67480834145500574602)
#define COS0_8 FIXR(0.74453627100229844977)
#define COS0_9 FIXR(0.83934964541552703873)
#define COS0_10 FIXR(0.97256823786196069369)
#define COS0_11 FIXR(1.16943993343288495515)
#define COS0_12 FIXR(1.48416461631416627724)
#define COS0_13 FIXR(2.05778100995341155085)
#define COS0_14 FIXR(3.40760841846871878570)
#define COS0_15 FIXR(10.19000812354805681150)
#define COS1_0 FIXR(0.50241928618815570551)
#define COS1_1 FIXR(0.52249861493968888062)
#define COS1_2 FIXR(0.56694403481635770368)
#define COS1_3 FIXR(0.64682178335999012954)
#define COS1_4 FIXR(0.78815462345125022473)
#define COS1_5 FIXR(1.06067768599034747134)
#define COS1_6 FIXR(1.72244709823833392782)
#define COS1_7 FIXR(5.10114861868916385802)
#define COS2_0 FIXR(0.50979557910415916894)
#define COS2_1 FIXR(0.60134488693504528054)
#define COS2_2 FIXR(0.89997622313641570463)
#define COS2_3 FIXR(2.56291544774150617881)
#define COS3_0 FIXR(0.54119610014619698439)
#define COS3_1 FIXR(1.30656296487637652785)
#define COS4_0 FIXR(0.70710678118654752439)
/* butterfly operator */
#define BF(a, b, c)\
{\
tmp0 = tab[a] + tab[b];\
tmp1 = tab[a] - tab[b];\
tab[a] = tmp0;\
tab[b] = MULL(tmp1, c);\
}
#define BF1(a, b, c, d)\
{\
BF(a, b, COS4_0);\
BF(c, d, -COS4_0);\
tab[c] += tab[d];\
}
#define BF2(a, b, c, d)\
{\
BF(a, b, COS4_0);\
BF(c, d, -COS4_0);\
tab[c] += tab[d];\
tab[a] += tab[c];\
tab[c] += tab[b];\
tab[b] += tab[d];\
}
#define ADD(a, b) tab[a] += tab[b]
/* DCT32 without 1/sqrt(2) coef zero scaling. */
static void dct32(INT32 *out, INT32 *tab)
{
int tmp0, tmp1;
/* pass 1 */
BF(0, 31, COS0_0);
BF(1, 30, COS0_1);
BF(2, 29, COS0_2);
BF(3, 28, COS0_3);
BF(4, 27, COS0_4);
BF(5, 26, COS0_5);
BF(6, 25, COS0_6);
BF(7, 24, COS0_7);
BF(8, 23, COS0_8);
BF(9, 22, COS0_9);
BF(10, 21, COS0_10);
BF(11, 20, COS0_11);
BF(12, 19, COS0_12);
BF(13, 18, COS0_13);
BF(14, 17, COS0_14);
BF(15, 16, COS0_15);
/* pass 2 */
BF(0, 15, COS1_0);
BF(1, 14, COS1_1);
BF(2, 13, COS1_2);
BF(3, 12, COS1_3);
BF(4, 11, COS1_4);
BF(5, 10, COS1_5);
BF(6, 9, COS1_6);
BF(7, 8, COS1_7);
BF(16, 31, -COS1_0);
BF(17, 30, -COS1_1);
BF(18, 29, -COS1_2);
BF(19, 28, -COS1_3);
BF(20, 27, -COS1_4);
BF(21, 26, -COS1_5);
BF(22, 25, -COS1_6);
BF(23, 24, -COS1_7);
/* pass 3 */
BF(0, 7, COS2_0);
BF(1, 6, COS2_1);
BF(2, 5, COS2_2);
BF(3, 4, COS2_3);
BF(8, 15, -COS2_0);
BF(9, 14, -COS2_1);
BF(10, 13, -COS2_2);
BF(11, 12, -COS2_3);
BF(16, 23, COS2_0);
BF(17, 22, COS2_1);
BF(18, 21, COS2_2);
BF(19, 20, COS2_3);
BF(24, 31, -COS2_0);
BF(25, 30, -COS2_1);
BF(26, 29, -COS2_2);
BF(27, 28, -COS2_3);
/* pass 4 */
BF(0, 3, COS3_0);
BF(1, 2, COS3_1);
BF(4, 7, -COS3_0);
BF(5, 6, -COS3_1);
BF(8, 11, COS3_0);
BF(9, 10, COS3_1);
BF(12, 15, -COS3_0);
BF(13, 14, -COS3_1);
BF(16, 19, COS3_0);
BF(17, 18, COS3_1);
BF(20, 23, -COS3_0);
BF(21, 22, -COS3_1);
BF(24, 27, COS3_0);
BF(25, 26, COS3_1);
BF(28, 31, -COS3_0);
BF(29, 30, -COS3_1);
/* pass 5 */
BF1(0, 1, 2, 3);
BF2(4, 5, 6, 7);
BF1(8, 9, 10, 11);
BF2(12, 13, 14, 15);
BF1(16, 17, 18, 19);
BF2(20, 21, 22, 23);
BF1(24, 25, 26, 27);
BF2(28, 29, 30, 31);
/* pass 6 */
ADD( 8, 12);
ADD(12, 10);
ADD(10, 14);
ADD(14, 9);
ADD( 9, 13);
ADD(13, 11);
ADD(11, 15);
out[ 0] = tab[0];
out[16] = tab[1];
out[ 8] = tab[2];
out[24] = tab[3];
out[ 4] = tab[4];
out[20] = tab[5];
out[12] = tab[6];
out[28] = tab[7];
out[ 2] = tab[8];
out[18] = tab[9];
out[10] = tab[10];
out[26] = tab[11];
out[ 6] = tab[12];
out[22] = tab[13];
out[14] = tab[14];
out[30] = tab[15];
ADD(24, 28);
ADD(28, 26);
ADD(26, 30);
ADD(30, 25);
ADD(25, 29);
ADD(29, 27);
ADD(27, 31);
out[ 1] = tab[16] + tab[24];
out[17] = tab[17] + tab[25];
out[ 9] = tab[18] + tab[26];
out[25] = tab[19] + tab[27];
out[ 5] = tab[20] + tab[28];
out[21] = tab[21] + tab[29];
out[13] = tab[22] + tab[30];
out[29] = tab[23] + tab[31];
out[ 3] = tab[24] + tab[20];
out[19] = tab[25] + tab[21];
out[11] = tab[26] + tab[22];
out[27] = tab[27] + tab[23];
out[ 7] = tab[28] + tab[18];
out[23] = tab[29] + tab[19];
out[15] = tab[30] + tab[17];
out[31] = tab[31];
}
#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
#if FRAC_BITS <= 15
#define OUT_SAMPLE(sum)\
{\
int sum1;\
sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\
if (sum1 < -32768)\
sum1 = -32768;\
else if (sum1 > 32767)\
sum1 = 32767;\
*samples = sum1;\
samples += incr;\
}
#define SUM8(off, op) \
{ \
sum op w[0 * 64 + off] * p[0 * 64];\
sum op w[1 * 64 + off] * p[1 * 64];\
sum op w[2 * 64 + off] * p[2 * 64];\
sum op w[3 * 64 + off] * p[3 * 64];\
sum op w[4 * 64 + off] * p[4 * 64];\
sum op w[5 * 64 + off] * p[5 * 64];\
sum op w[6 * 64 + off] * p[6 * 64];\
sum op w[7 * 64 + off] * p[7 * 64];\
}
#else
#define OUT_SAMPLE(sum)\
{\
int sum1;\
sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\
if (sum1 < -32768)\
sum1 = -32768;\
else if (sum1 > 32767)\
sum1 = 32767;\
*samples = sum1;\
samples += incr;\
}
#define SUM8(off, op) \
{ \
sum op MUL64(w[0 * 64 + off], p[0 * 64]);\
sum op MUL64(w[1 * 64 + off], p[1 * 64]);\
sum op MUL64(w[2 * 64 + off], p[2 * 64]);\
sum op MUL64(w[3 * 64 + off], p[3 * 64]);\
sum op MUL64(w[4 * 64 + off], p[4 * 64]);\
sum op MUL64(w[5 * 64 + off], p[5 * 64]);\
sum op MUL64(w[6 * 64 + off], p[6 * 64]);\
sum op MUL64(w[7 * 64 + off], p[7 * 64]);\
}
#endif
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
32 samples. */
/* XXX: optimize by avoiding ring buffer usage */
static void synth_filter(MPADecodeContext *s1,
int ch, INT16 *samples, int incr,
INT32 sb_samples[SBLIMIT])
{
INT32 tmp[32];
register MPA_INT *synth_buf, *p;
register MPA_INT *w;
int j, offset, v;
#if FRAC_BITS <= 15
int sum;
#else
INT64 sum;
#endif
dct32(tmp, sb_samples);
offset = s1->synth_buf_offset[ch];
synth_buf = s1->synth_buf[ch] + offset;
for(j=0;j<32;j++) {
v = tmp[j];
#if FRAC_BITS <= 15
Fabrice Bellard
committed
/* NOTE: can cause a loss in precision if very high amplitude
sound */
Fabrice Bellard
committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
if (v > 32767)
v = 32767;
else if (v < -32768)
v = -32768;
#endif
synth_buf[j] = v;
}
/* copy to avoid wrap */
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
w = window;
for(j=0;j<16;j++) {
sum = 0;
p = synth_buf + 16 + j; /* 0-15 */
SUM8(0, +=);
p = synth_buf + 48 - j; /* 32-47 */
SUM8(32, -=);
OUT_SAMPLE(sum);
w++;
}
p = synth_buf + 32; /* 48 */
sum = 0;
SUM8(32, -=);
OUT_SAMPLE(sum);
w++;
for(j=17;j<32;j++) {
sum = 0;
p = synth_buf + 48 - j; /* 17-31 */
SUM8(0, -=);
p = synth_buf + 16 + j; /* 49-63 */
SUM8(32, -=);
OUT_SAMPLE(sum);
w++;
}
offset = (offset - 32) & 511;
s1->synth_buf_offset[ch] = offset;
}
/* cos(pi*i/24) */
#define C1 FIXR(0.99144486137381041114)
#define C3 FIXR(0.92387953251128675612)
#define C5 FIXR(0.79335334029123516458)
#define C7 FIXR(0.60876142900872063941)
#define C9 FIXR(0.38268343236508977173)
#define C11 FIXR(0.13052619222005159154)
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
cases. */
static void imdct12(int *out, int *in)
{
int tmp;
INT64 in1_3, in1_9, in4_3, in4_9;
in1_3 = MUL64(in[1], C3);
in1_9 = MUL64(in[1], C9);
in4_3 = MUL64(in[4], C3);
in4_9 = MUL64(in[4], C9);
tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
out[0] = tmp;
out[5] = -tmp;
tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
MUL64(in[2] + in[5], C3) - in4_9);
out[1] = tmp;
out[4] = -tmp;
tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
out[2] = tmp;
out[3] = -tmp;
tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
out[6] = tmp;
out[11] = tmp;
tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
MUL64(in[2] + in[5], C9) + in4_3);
out[7] = tmp;
out[10] = tmp;
tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
out[8] = tmp;
out[9] = tmp;
}
#undef C1
#undef C3
#undef C5
#undef C7
#undef C9
#undef C11
/* cos(pi*i/18) */
#define C1 FIXR(0.98480775301220805936)
#define C2 FIXR(0.93969262078590838405)
#define C3 FIXR(0.86602540378443864676)
#define C4 FIXR(0.76604444311897803520)
#define C5 FIXR(0.64278760968653932632)
#define C6 FIXR(0.5)
#define C7 FIXR(0.34202014332566873304)
#define C8 FIXR(0.17364817766693034885)
/* 0.5 / cos(pi*(2*i+1)/36) */
static const int icos36[9] = {
FIXR(0.50190991877167369479),
FIXR(0.51763809020504152469),
FIXR(0.55168895948124587824),
FIXR(0.61038729438072803416),
FIXR(0.70710678118654752439),
FIXR(0.87172339781054900991),
FIXR(1.18310079157624925896),
FIXR(1.93185165257813657349),
FIXR(5.73685662283492756461),
};
static const int icos72[18] = {
/* 0.5 / cos(pi*(2*i+19)/72) */
FIXR(0.74009361646113053152),
FIXR(0.82133981585229078570),
FIXR(0.93057949835178895673),
FIXR(1.08284028510010010928),
FIXR(1.30656296487637652785),
FIXR(1.66275476171152078719),
FIXR(2.31011315767264929558),
FIXR(3.83064878777019433457),
FIXR(11.46279281302667383546),
/* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
FIXR(-0.67817085245462840086),
FIXR(-0.63023620700513223342),
FIXR(-0.59284452371708034528),
FIXR(-0.56369097343317117734),
FIXR(-0.54119610014619698439),
FIXR(-0.52426456257040533932),
FIXR(-0.51213975715725461845),
FIXR(-0.50431448029007636036),
FIXR(-0.50047634258165998492),
};
/* using Lee like decomposition followed by hand coded 9 points DCT */
static void imdct36(int *out, int *in)
{
int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
int tmp[18], *tmp1, *in1;
INT64 in3_3, in6_6;
for(i=17;i>=1;i--)
in[i] += in[i-1];
for(i=17;i>=3;i-=2)
in[i] += in[i-2];
for(j=0;j<2;j++) {
tmp1 = tmp + j;
in1 = in + j;
in3_3 = MUL64(in1[2*3], C3);
in6_6 = MUL64(in1[2*6], C6);
tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
MUL64(in1[2*4], C4) + in6_6 +
MUL64(in1[2*8], C8));
tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
in1[2*6] + in1[2*0];
tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
MUL64(in1[2*4], C2) + in6_6 +
MUL64(in1[2*8], C4));
tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
MUL64(in1[2*5], C1) -
MUL64(in1[2*7], C5));
tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
MUL64(in1[2*4], C8) + in6_6 -
MUL64(in1[2*8], C2));
tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
}
i = 0;
for(j=0;j<4;j++) {
t0 = tmp[i];
t1 = tmp[i + 2];