Newer
Older
/**
* LPC utility code
Justin Ruggles
committed
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/lls.h"
#include "dsputil.h"
Vitor Sessak
committed
#define LPC_USE_DOUBLE
#include "lpc.h"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
* Apply Welch window function to audio block
*/
static void apply_welch_window(const int32_t *data, int len, double *w_data)
{
int i, n2;
double w;
double c;
assert(!(len&1)); //the optimization in r11881 does not support odd len
//if someone wants odd len extend the change in r11881
n2 = (len >> 1);
c = 2.0 / (len - 1.0);
w_data+=n2;
data+=n2;
for(i=0; i<n2; i++) {
w = c - n2 + i;
w = 1.0 - (w * w);
w_data[-i-1] = data[-i-1] * w;
w_data[+i ] = data[+i ] * w;
}
}
/**
* Calculates autocorrelation data from audio samples
* A Welch window function is applied before calculation.
*/
void ff_lpc_compute_autocorr(const int32_t *data, int len, int lag,
double *autoc)
{
int i, j;
double tmp[len + lag + 1];
double *data1= tmp + lag;
apply_welch_window(data, len, data1);
for(j=0; j<lag; j++)
data1[j-lag]= 0.0;
data1[len] = 0.0;
for(j=0; j<lag; j+=2){
double sum0 = 1.0, sum1 = 1.0;
for(i=j; i<len; i++){
sum0 += data1[i] * data1[i-j];
sum1 += data1[i] * data1[i-j-1];
}
autoc[j ] = sum0;
autoc[j+1] = sum1;
}
if(j==lag){
double sum = 1.0;
for(i=j-1; i<len; i+=2){
sum += data1[i ] * data1[i-j ]
+ data1[i+1] * data1[i-j+1];
}
autoc[j] = sum;
}
}
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/**
* Quantize LPC coefficients
*/
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
{
int i;
double cmax, error;
int32_t qmax;
int sh;
/* define maximum levels */
qmax = (1 << (precision - 1)) - 1;
/* find maximum coefficient value */
cmax = 0.0;
for(i=0; i<order; i++) {
cmax= FFMAX(cmax, fabs(lpc_in[i]));
}
/* if maximum value quantizes to zero, return all zeros */
if(cmax * (1 << max_shift) < 1.0) {
*shift = zero_shift;
memset(lpc_out, 0, sizeof(int32_t) * order);
return;
}
/* calculate level shift which scales max coeff to available bits */
sh = max_shift;
while((cmax * (1 << sh) > qmax) && (sh > 0)) {
sh--;
}
/* since negative shift values are unsupported in decoder, scale down
coefficients instead */
if(sh == 0 && cmax > qmax) {
double scale = ((double)qmax) / cmax;
for(i=0; i<order; i++) {
lpc_in[i] *= scale;
}
}
/* output quantized coefficients and level shift */
error=0;
for(i=0; i<order; i++) {
Vitor Sessak
committed
error -= lpc_in[i] * (1 << sh);
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
error -= lpc_out[i];
}
*shift = sh;
}
static int estimate_best_order(double *ref, int min_order, int max_order)
{
int i, est;
est = min_order;
for(i=max_order-1; i>=min_order-1; i--) {
if(ref[i] > 0.10) {
est = i+1;
break;
}
}
return est;
}
/**
* Calculate LPC coefficients for multiple orders
*
* @param use_lpc LPC method for determining coefficients
* 0 = LPC with fixed pre-defined coeffs
* 1 = LPC with coeffs determined by Levinson-Durbin recursion
* 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
*/
int ff_lpc_calc_coefs(DSPContext *s,
const int32_t *samples, int blocksize, int min_order,
int max_order, int precision,
int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc,
int omethod, int max_shift, int zero_shift)
{
double autoc[MAX_LPC_ORDER+1];
double ref[MAX_LPC_ORDER];
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i, j, pass;
int opt_order;
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && use_lpc > 0);
if(use_lpc == 1){
s->lpc_compute_autocorr(samples, blocksize, max_order, autoc);
Vitor Sessak
committed
compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
for(i=0; i<max_order; i++)
ref[i] = fabs(lpc[i][i]);
}else{
LLSModel m[2];
double var[MAX_LPC_ORDER+1], av_uninit(weight);
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
for(pass=0; pass<use_lpc-1; pass++){
av_init_lls(&m[pass&1], max_order);
weight=0;
for(i=max_order; i<blocksize; i++){
for(j=0; j<=max_order; j++)
var[j]= samples[i-j];
if(pass){
double eval, inv, rinv;
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
eval= (512>>pass) + fabs(eval - var[0]);
inv = 1/eval;
rinv = sqrt(inv);
for(j=0; j<=max_order; j++)
var[j] *= rinv;
weight += inv;
}else
weight++;
av_update_lls(&m[pass&1], var, 1.0);
}
av_solve_lls(&m[pass&1], 0.001, 0);
}
for(i=0; i<max_order; i++){
for(j=0; j<max_order; j++)
Vitor Sessak
committed
lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
}
for(i=max_order-1; i>0; i--)
ref[i] = ref[i-1] - ref[i];
}
opt_order = max_order;
if(omethod == ORDER_METHOD_EST) {
opt_order = estimate_best_order(ref, min_order, max_order);
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
} else {
for(i=min_order-1; i<max_order; i++) {
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
}
}
return opt_order;
}