Skip to content
Snippets Groups Projects
lpc.c 6.69 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
    
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #include "libavutil/lls.h"
    #include "dsputil.h"
    
    /**
     * Apply Welch window function to audio block
     */
    static void apply_welch_window(const int32_t *data, int len, double *w_data)
    {
        int i, n2;
        double w;
        double c;
    
        assert(!(len&1)); //the optimization in r11881 does not support odd len
                          //if someone wants odd len extend the change in r11881
    
        n2 = (len >> 1);
        c = 2.0 / (len - 1.0);
    
        w_data+=n2;
          data+=n2;
        for(i=0; i<n2; i++) {
            w = c - n2 + i;
            w = 1.0 - (w * w);
            w_data[-i-1] = data[-i-1] * w;
            w_data[+i  ] = data[+i  ] * w;
        }
    }
    
    /**
     * Calculates autocorrelation data from audio samples
     * A Welch window function is applied before calculation.
     */
    void ff_lpc_compute_autocorr(const int32_t *data, int len, int lag,
                                 double *autoc)
    {
        int i, j;
        double tmp[len + lag + 1];
        double *data1= tmp + lag;
    
        apply_welch_window(data, len, data1);
    
        for(j=0; j<lag; j++)
            data1[j-lag]= 0.0;
        data1[len] = 0.0;
    
        for(j=0; j<lag; j+=2){
            double sum0 = 1.0, sum1 = 1.0;
            for(i=j; i<len; i++){
                sum0 += data1[i] * data1[i-j];
                sum1 += data1[i] * data1[i-j-1];
            }
            autoc[j  ] = sum0;
            autoc[j+1] = sum1;
        }
    
        if(j==lag){
            double sum = 1.0;
            for(i=j-1; i<len; i+=2){
                sum += data1[i  ] * data1[i-j  ]
                     + data1[i+1] * data1[i-j+1];
            }
            autoc[j] = sum;
        }
    }
    
    
    /**
     * Quantize LPC coefficients
     */
    static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
                                   int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
    {
        int i;
        double cmax, error;
        int32_t qmax;
        int sh;
    
        /* define maximum levels */
        qmax = (1 << (precision - 1)) - 1;
    
        /* find maximum coefficient value */
        cmax = 0.0;
        for(i=0; i<order; i++) {
            cmax= FFMAX(cmax, fabs(lpc_in[i]));
        }
    
        /* if maximum value quantizes to zero, return all zeros */
        if(cmax * (1 << max_shift) < 1.0) {
            *shift = zero_shift;
            memset(lpc_out, 0, sizeof(int32_t) * order);
            return;
        }
    
        /* calculate level shift which scales max coeff to available bits */
        sh = max_shift;
        while((cmax * (1 << sh) > qmax) && (sh > 0)) {
            sh--;
        }
    
        /* since negative shift values are unsupported in decoder, scale down
           coefficients instead */
        if(sh == 0 && cmax > qmax) {
            double scale = ((double)qmax) / cmax;
            for(i=0; i<order; i++) {
                lpc_in[i] *= scale;
            }
        }
    
        /* output quantized coefficients and level shift */
        error=0;
        for(i=0; i<order; i++) {
    
            lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
            error -= lpc_out[i];
        }
        *shift = sh;
    }
    
    
    static int estimate_best_order(double *ref, int min_order, int max_order)
    
        est = min_order;
        for(i=max_order-1; i>=min_order-1; i--) {
    
            if(ref[i] > 0.10) {
                est = i+1;
                break;
            }
        }
        return est;
    }
    
    /**
     * Calculate LPC coefficients for multiple orders
    
     *
     * @param use_lpc LPC method for determining coefficients
     * 0  = LPC with fixed pre-defined coeffs
     * 1  = LPC with coeffs determined by Levinson-Durbin recursion
     * 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
    
     */
    int ff_lpc_calc_coefs(DSPContext *s,
    
                          const int32_t *samples, int blocksize, int min_order,
                          int max_order, int precision,
                          int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc,
                          int omethod, int max_shift, int zero_shift)
    
    {
        double autoc[MAX_LPC_ORDER+1];
        double ref[MAX_LPC_ORDER];
        double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
        int i, j, pass;
        int opt_order;
    
    
        assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && use_lpc > 0);
    
            s->lpc_compute_autocorr(samples, blocksize, max_order, autoc);
    
            compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
    
            for(i=0; i<max_order; i++)
                ref[i] = fabs(lpc[i][i]);
    
            double var[MAX_LPC_ORDER+1], av_uninit(weight);
    
    
            for(pass=0; pass<use_lpc-1; pass++){
                av_init_lls(&m[pass&1], max_order);
    
                weight=0;
                for(i=max_order; i<blocksize; i++){
                    for(j=0; j<=max_order; j++)
                        var[j]= samples[i-j];
    
                    if(pass){
                        double eval, inv, rinv;
                        eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
                        eval= (512>>pass) + fabs(eval - var[0]);
                        inv = 1/eval;
                        rinv = sqrt(inv);
                        for(j=0; j<=max_order; j++)
                            var[j] *= rinv;
                        weight += inv;
                    }else
                        weight++;
    
                    av_update_lls(&m[pass&1], var, 1.0);
                }
                av_solve_lls(&m[pass&1], 0.001, 0);
            }
    
            for(i=0; i<max_order; i++){
                for(j=0; j<max_order; j++)
    
                ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
            }
            for(i=max_order-1; i>0; i--)
                ref[i] = ref[i-1] - ref[i];
        }
        opt_order = max_order;
    
        if(omethod == ORDER_METHOD_EST) {
    
            opt_order = estimate_best_order(ref, min_order, max_order);
    
            i = opt_order-1;
            quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
        } else {
    
            for(i=min_order-1; i<max_order; i++) {
    
                quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
            }
        }
    
        return opt_order;
    }