Skip to content
Snippets Groups Projects
aacsbr_fixed.c 22.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (c) 2013
     *      MIPS Technologies, Inc., California.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     * 1. Redistributions of source code must retain the above copyright
     *    notice, this list of conditions and the following disclaimer.
     * 2. Redistributions in binary form must reproduce the above copyright
     *    notice, this list of conditions and the following disclaimer in the
     *    documentation and/or other materials provided with the distribution.
     * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
     *    contributors may be used to endorse or promote products derived from
     *    this software without specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
     * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED.  IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
     * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     * SUCH DAMAGE.
     *
     * AAC Spectral Band Replication decoding functions (fixed-point)
     * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
     * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file
     * AAC Spectral Band Replication decoding functions (fixed-point)
     * Note: Rounding-to-nearest used unless otherwise stated
     * @author Robert Swain ( rob opendot cl )
     * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
     */
    #define USE_FIXED 1
    
    #include "aac.h"
    #include "sbr.h"
    #include "aacsbr.h"
    #include "aacsbrdata.h"
    #include "aacsbr_fixed_tablegen.h"
    #include "fft.h"
    #include "aacps.h"
    #include "sbrdsp.h"
    #include "libavutil/internal.h"
    #include "libavutil/libm.h"
    #include "libavutil/avassert.h"
    
    #include <stdint.h>
    #include <float.h>
    #include <math.h>
    
    static VLC vlc_sbr[10];
    static void aacsbr_func_ptr_init(AACSBRContext *c);
    static const int CONST_LN2       = Q31(0.6931471806/256);  // ln(2)/256
    static const int CONST_RECIP_LN2 = Q31(0.7213475204);      // 0.5/ln(2)
    static const int CONST_076923    = Q31(0.76923076923076923077f);
    
    
    static const int fixed_log_table[10] =
    
    {
        Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6),
        Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11)
    };
    
    static int fixed_log(int x)
    {
        int i, ret, xpow, tmp;
    
        ret = x;
        xpow = x;
        for (i=0; i<10; i+=2){
            xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
            tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31);
            ret -= tmp;
    
            xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
            tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31);
            ret += tmp;
        }
    
        return ret;
    }
    
    
    static const int fixed_exp_table[7] =
    
    {
        Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120),
        Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320)
    };
    
    static int fixed_exp(int x)
    {
        int i, ret, xpow, tmp;
    
        ret = 0x800000 + x;
        xpow = x;
        for (i=0; i<7; i++){
            xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
            tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31);
            ret += tmp;
        }
    
        return ret;
    }
    
    static void make_bands(int16_t* bands, int start, int stop, int num_bands)
    {
        int k, previous, present;
        int base, prod, nz = 0;
    
        base = (stop << 23) / start;
        while (base < 0x40000000){
            base <<= 1;
            nz++;
        }
        base = fixed_log(base - 0x80000000);
        base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands;
        base = fixed_exp(base);
    
        previous = start;
        prod = start << 23;
    
        for (k = 0; k < num_bands-1; k++) {
            prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
            present = (prod + 0x400000) >> 23;
            bands[k] = present - previous;
            previous = present;
        }
        bands[num_bands-1] = stop - previous;
    }
    
    /// Dequantization and stereo decoding (14496-3 sp04 p203)
    static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
    {
        int k, e;
        int ch;
    
        if (id_aac == TYPE_CPE && sbr->bs_coupling) {
            int alpha      = sbr->data[0].bs_amp_res ?  2 :  1;
            int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
            for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
                for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
                    SoftFloat temp1, temp2, fac;
    
    
                    temp1.exp = sbr->data[0].env_facs_q[e][k] * alpha + 14;
    
                    if (temp1.exp & 1)
                      temp1.mant = 759250125;
                    else
                      temp1.mant = 0x20000000;
                    temp1.exp = (temp1.exp >> 1) + 1;
    
                    if (temp1.exp > 66) { // temp1 > 1E20
                        av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
                        temp1 = FLOAT_1;
                    }
    
                    temp2.exp = (pan_offset - sbr->data[1].env_facs_q[e][k]) * alpha;
    
                    if (temp2.exp & 1)
                      temp2.mant = 759250125;
                    else
                      temp2.mant = 0x20000000;
                    temp2.exp = (temp2.exp >> 1) + 1;
                    fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
                    sbr->data[0].env_facs[e][k] = fac;
                    sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2);
                }
            }
            for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
                for (k = 0; k < sbr->n_q; k++) {
                    SoftFloat temp1, temp2, fac;
    
                    temp1.exp = NOISE_FLOOR_OFFSET - \
    
                        sbr->data[0].noise_facs_q[e][k] + 2;
    
                    temp2.exp = 12 - sbr->data[1].noise_facs_q[e][k] + 1;
    
                    temp2.mant = 0x20000000;
                    fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
                    sbr->data[0].noise_facs[e][k] = fac;
                    sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2);
                }
            }
        } else { // SCE or one non-coupled CPE
            for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
                int alpha = sbr->data[ch].bs_amp_res ? 2 : 1;
                for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
                    for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
                        SoftFloat temp1;
    
    
                        temp1.exp = alpha * sbr->data[ch].env_facs_q[e][k] + 12;
    
                        if (temp1.exp & 1)
                            temp1.mant = 759250125;
                        else
                            temp1.mant = 0x20000000;
                        temp1.exp = (temp1.exp >> 1) + 1;
    
                        if (temp1.exp > 66) { // temp1 > 1E20
                            av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
                            temp1 = FLOAT_1;
                        }
    
                        sbr->data[ch].env_facs[e][k] = temp1;
                    }
                for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
                    for (k = 0; k < sbr->n_q; k++){
                        sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \
    
                            sbr->data[ch].noise_facs_q[e][k] + 1;
    
                        sbr->data[ch].noise_facs[e][k].mant = 0x20000000;
                    }
            }
        }
    }
    
    /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
     * (14496-3 sp04 p214)
     * Warning: This routine does not seem numerically stable.
     */
    static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
                                      int (*alpha0)[2], int (*alpha1)[2],
                                      const int X_low[32][40][2], int k0)
    {
        int k;
        int shift, round;
    
        for (k = 0; k < k0; k++) {
            SoftFloat phi[3][2][2];
            SoftFloat a00, a01, a10, a11;
            SoftFloat dk;
    
            dsp->autocorrelate(X_low[k], phi);
    
            dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]),
                 av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]),
                 av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999));
    
            if (!dk.mant) {
                a10 = FLOAT_0;
                a11 = FLOAT_0;
            } else {
                SoftFloat temp_real, temp_im;
                temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]),
                                                av_mul_sf(phi[0][0][1], phi[1][1][1])),
                                      av_mul_sf(phi[0][1][0], phi[1][0][0]));
                temp_im   = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]),
                                                av_mul_sf(phi[0][0][1], phi[1][1][0])),
                                      av_mul_sf(phi[0][1][1], phi[1][0][0]));
    
                a10 = av_div_sf(temp_real, dk);
                a11 = av_div_sf(temp_im,   dk);
            }
    
            if (!phi[1][0][0].mant) {
                a00 = FLOAT_0;
                a01 = FLOAT_0;
            } else {
                SoftFloat temp_real, temp_im;
                temp_real = av_add_sf(phi[0][0][0],
                                      av_add_sf(av_mul_sf(a10, phi[1][1][0]),
                                                av_mul_sf(a11, phi[1][1][1])));
                temp_im   = av_add_sf(phi[0][0][1],
                                      av_sub_sf(av_mul_sf(a11, phi[1][1][0]),
                                                av_mul_sf(a10, phi[1][1][1])));
    
                temp_real.mant = -temp_real.mant;
                temp_im.mant   = -temp_im.mant;
                a00 = av_div_sf(temp_real, phi[1][0][0]);
                a01 = av_div_sf(temp_im,   phi[1][0][0]);
            }
    
            shift = a00.exp;
            if (shift >= 3)
                alpha0[k][0] = 0x7fffffff;
            else {
                a00.mant <<= 1;
                shift = 2-shift;
                if (shift == 0)
                    alpha0[k][0] = a00.mant;
                else {
                    round = 1 << (shift-1);
                    alpha0[k][0] = (a00.mant + round) >> shift;
                }
            }
    
            shift = a01.exp;
            if (shift >= 3)
                alpha0[k][1] = 0x7fffffff;
            else {
                a01.mant <<= 1;
                shift = 2-shift;
                if (shift == 0)
                    alpha0[k][1] = a01.mant;
                else {
                    round = 1 << (shift-1);
                    alpha0[k][1] = (a01.mant + round) >> shift;
                }
            }
            shift = a10.exp;
            if (shift >= 3)
                alpha1[k][0] = 0x7fffffff;
            else {
                a10.mant <<= 1;
                shift = 2-shift;
                if (shift == 0)
                    alpha1[k][0] = a10.mant;
                else {
                    round = 1 << (shift-1);
                    alpha1[k][0] = (a10.mant + round) >> shift;
                }
            }
    
            shift = a11.exp;
            if (shift >= 3)
                alpha1[k][1] = 0x7fffffff;
            else {
                a11.mant <<= 1;
                shift = 2-shift;
                if (shift == 0)
                    alpha1[k][1] = a11.mant;
                else {
                    round = 1 << (shift-1);
                    alpha1[k][1] = (a11.mant + round) >> shift;
                }
            }
    
            shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
                           (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
                           0x40000000) >> 31);
            if (shift >= 0x20000000){
                alpha1[k][0] = 0;
                alpha1[k][1] = 0;
                alpha0[k][0] = 0;
                alpha0[k][1] = 0;
            }
    
            shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
                           (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
                           0x40000000) >> 31);
            if (shift >= 0x20000000){
                alpha1[k][0] = 0;
                alpha1[k][1] = 0;
                alpha0[k][0] = 0;
                alpha0[k][1] = 0;
            }
        }
    }
    
    /// Chirp Factors (14496-3 sp04 p214)
    static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
    {
        int i;
        int new_bw;
        static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
        int64_t accu;
    
        for (i = 0; i < sbr->n_q; i++) {
            if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1)
                new_bw = 1288490189;
            else
                new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
    
            if (new_bw < ch_data->bw_array[i]){
                accu  = (int64_t)new_bw * 1610612736;
                accu += (int64_t)ch_data->bw_array[i] * 0x20000000;
                new_bw = (int)((accu + 0x40000000) >> 31);
            } else {
                accu  = (int64_t)new_bw * 1946157056;
                accu += (int64_t)ch_data->bw_array[i] * 201326592;
                new_bw = (int)((accu + 0x40000000) >> 31);
            }
            ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
        }
    }
    
    /**
     * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
     * and Calculation of gain (14496-3 sp04 p219)
     */
    static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
                              SBRData *ch_data, const int e_a[2])
    {
        int e, k, m;
        // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
        static const SoftFloat limgain[4] = { { 760155524,  0 }, { 0x20000000,  1 },
                                                { 758351638,  1 }, { 625000000, 34 } };
    
        for (e = 0; e < ch_data->bs_num_env; e++) {
            int delta = !((e == e_a[1]) || (e == e_a[0]));
            for (k = 0; k < sbr->n_lim; k++) {
                SoftFloat gain_boost, gain_max;
    
                for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                    const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m],
                                                av_add_sf(FLOAT_1, sbr->q_mapped[e][m]));
                    sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m]));
                    sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0)));
                    if (!sbr->s_mapped[e][m]) {
                        if (delta) {
                          sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
                                                av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
                                                av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
                        } else {
                          sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
                                                av_add_sf(FLOAT_1, sbr->e_curr[e][m])));
                        }
                    } else {
                        sbr->gain[e][m] = av_sqrt_sf(
                                            av_div_sf(
                                                av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]),
                                                av_mul_sf(
                                                    av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
                                                    av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
                    }
                }
                for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                    sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
                    sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]);
                }
                gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains],
                                av_sqrt_sf(
                                    av_div_sf(
                                        av_add_sf(FLOAT_EPSILON, sum[0]),
                                        av_add_sf(FLOAT_EPSILON, sum[1]))));
                if (av_gt_sf(gain_max, FLOAT_100000))
                  gain_max = FLOAT_100000;
                for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                    SoftFloat q_m_max = av_div_sf(
                                            av_mul_sf(sbr->q_m[e][m], gain_max),
                                            sbr->gain[e][m]);
                    if (av_gt_sf(sbr->q_m[e][m], q_m_max))
                      sbr->q_m[e][m] = q_m_max;
                    if (av_gt_sf(sbr->gain[e][m], gain_max))
                      sbr->gain[e][m] = gain_max;
                }
                sum[0] = sum[1] = FLOAT_0;
                for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                    sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
                    sum[1] = av_add_sf(sum[1],
                                av_mul_sf(
                                    av_mul_sf(sbr->e_curr[e][m],
                                              sbr->gain[e][m]),
                                    sbr->gain[e][m]));
                    sum[1] = av_add_sf(sum[1],
                                av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m]));
                    if (delta && !sbr->s_m[e][m].mant)
                      sum[1] = av_add_sf(sum[1],
                                    av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m]));
                }
                gain_boost = av_sqrt_sf(
                                av_div_sf(
                                    av_add_sf(FLOAT_EPSILON, sum[0]),
                                    av_add_sf(FLOAT_EPSILON, sum[1])));
                if (av_gt_sf(gain_boost, FLOAT_1584893192))
                  gain_boost = FLOAT_1584893192;
    
                for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                    sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost);
                    sbr->q_m[e][m]  = av_mul_sf(sbr->q_m[e][m], gain_boost);
                    sbr->s_m[e][m]  = av_mul_sf(sbr->s_m[e][m], gain_boost);
                }
            }
        }
    }
    
    /// Assembling HF Signals (14496-3 sp04 p220)
    static void sbr_hf_assemble(int Y1[38][64][2],
                                const int X_high[64][40][2],
                                SpectralBandReplication *sbr, SBRData *ch_data,
                                const int e_a[2])
    {
        int e, i, j, m;
        const int h_SL = 4 * !sbr->bs_smoothing_mode;
        const int kx = sbr->kx[1];
        const int m_max = sbr->m[1];
        static const SoftFloat h_smooth[5] = {
          { 715827883, -1 },
          { 647472402, -1 },
          { 937030863, -2 },
          { 989249804, -3 },
          { 546843842, -4 },
        };
        SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
        int indexnoise = ch_data->f_indexnoise;
        int indexsine  = ch_data->f_indexsine;
    
        if (sbr->reset) {
            for (i = 0; i < h_SL; i++) {
                memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
                memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
            }
        } else if (h_SL) {
            for (i = 0; i < 4; i++) {
                memcpy(g_temp[i + 2 * ch_data->t_env[0]],
                       g_temp[i + 2 * ch_data->t_env_num_env_old],
                       sizeof(g_temp[0]));
                memcpy(q_temp[i + 2 * ch_data->t_env[0]],
                       q_temp[i + 2 * ch_data->t_env_num_env_old],
                       sizeof(q_temp[0]));
            }
        }
    
        for (e = 0; e < ch_data->bs_num_env; e++) {
            for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
                memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
                memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
            }
        }
    
        for (e = 0; e < ch_data->bs_num_env; e++) {
            for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
                SoftFloat g_filt_tab[48];
                SoftFloat q_filt_tab[48];
                SoftFloat *g_filt, *q_filt;
    
                if (h_SL && e != e_a[0] && e != e_a[1]) {
                    g_filt = g_filt_tab;
                    q_filt = q_filt_tab;
                    for (m = 0; m < m_max; m++) {
                        const int idx1 = i + h_SL;
                        g_filt[m].mant = g_filt[m].exp = 0;
                        q_filt[m].mant = q_filt[m].exp = 0;
                        for (j = 0; j <= h_SL; j++) {
                            g_filt[m] = av_add_sf(g_filt[m],
                                            av_mul_sf(g_temp[idx1 - j][m],
                                                h_smooth[j]));
                            q_filt[m] = av_add_sf(q_filt[m],
                                            av_mul_sf(q_temp[idx1 - j][m],
                                                h_smooth[j]));
                        }
                    }
                } else {
                    g_filt = g_temp[i + h_SL];
                    q_filt = q_temp[i];
                }
    
                sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
                                   i + ENVELOPE_ADJUSTMENT_OFFSET);
    
                if (e != e_a[0] && e != e_a[1]) {
                    sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
                                                       q_filt, indexnoise,
                                                       kx, m_max);
                } else {
                    int idx = indexsine&1;
                    int A = (1-((indexsine+(kx & 1))&2));
                    int B = (A^(-idx)) + idx;
                    int *out = &Y1[i][kx][idx];
                    int shift, round;
    
                    SoftFloat *in  = sbr->s_m[e];
                    for (m = 0; m+1 < m_max; m+=2) {
                      shift = 22 - in[m  ].exp;
                      round = 1 << (shift-1);
                      out[2*m  ] += (in[m  ].mant * A + round) >> shift;
    
                      shift = 22 - in[m+1].exp;
                      round = 1 << (shift-1);
                      out[2*m+2] += (in[m+1].mant * B + round) >> shift;
                    }
                    if(m_max&1)
                    {
                      shift = 22 - in[m  ].exp;
                      round = 1 << (shift-1);
    
                      out[2*m  ] += (in[m  ].mant * A + round) >> shift;
                    }
                }
                indexnoise = (indexnoise + m_max) & 0x1ff;
                indexsine = (indexsine + 1) & 3;
            }
        }
        ch_data->f_indexnoise = indexnoise;
        ch_data->f_indexsine  = indexsine;
    }
    
    #include "aacsbr_template.c"