Skip to content
Snippets Groups Projects
aacenc_utils.h 8.11 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * AAC encoder utilities
     * Copyright (C) 2015 Rostislav Pehlivanov
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file
     * AAC encoder utilities
     * @author Rostislav Pehlivanov ( atomnuker gmail com )
     */
    
    #ifndef AVCODEC_AACENC_UTILS_H
    #define AVCODEC_AACENC_UTILS_H
    
    
    #include "libavutil/internal.h"
    
    #include "aac.h"
    #include "aacenctab.h"
    
    
    #define ROUND_STANDARD 0.4054f
    #define ROUND_TO_ZERO 0.1054f
    #define C_QUANT 0.4054f
    
    static inline void abs_pow34_v(float *out, const float *in, const int size)
    {
        int i;
        for (i = 0; i < size; i++) {
            float a = fabsf(in[i]);
            out[i] = sqrtf(a * sqrtf(a));
        }
    }
    
    
    static inline float pos_pow34(float a)
    {
        return sqrtf(a * sqrtf(a));
    }
    
    
    /**
     * Quantize one coefficient.
     * @return absolute value of the quantized coefficient
     * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
     */
    static inline int quant(float coef, const float Q, const float rounding)
    {
        float a = coef * Q;
        return sqrtf(a * sqrtf(a)) + rounding;
    }
    
    static inline void quantize_bands(int *out, const float *in, const float *scaled,
                                      int size, float Q34, int is_signed, int maxval,
                                      const float rounding)
    {
        int i;
        for (i = 0; i < size; i++) {
    
            float qc = scaled[i] * Q34;
    
            int tmp = (int)FFMIN(qc + rounding, (float)maxval);
    
            if (is_signed && in[i] < 0.0f) {
    
        }
    }
    
    static inline float find_max_val(int group_len, int swb_size, const float *scaled)
    {
        float maxval = 0.0f;
        int w2, i;
        for (w2 = 0; w2 < group_len; w2++) {
            for (i = 0; i < swb_size; i++) {
                maxval = FFMAX(maxval, scaled[w2*128+i]);
            }
        }
        return maxval;
    }
    
    static inline int find_min_book(float maxval, int sf)
    {
    
        float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
    
        int qmaxval, cb;
        qmaxval = maxval * Q34 + C_QUANT;
    
        if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
            cb = 11;
        else
            cb = aac_maxval_cb[qmaxval];
    
    static inline float find_form_factor(int group_len, int swb_size, float thresh,
                                         const float *scaled, float nzslope) {
    
        const float iswb_size = 1.0f / swb_size;
        const float iswb_sizem1 = 1.0f / (swb_size - 1);
        const float ethresh = thresh;
        float form = 0.0f, weight = 0.0f;
        int w2, i;
        for (w2 = 0; w2 < group_len; w2++) {
            float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
            float nzl = 0;
            for (i = 0; i < swb_size; i++) {
                float s = fabsf(scaled[w2*128+i]);
                maxval = FFMAX(maxval, s);
                e += s;
                e2 += s *= s;
                /* We really don't want a hard non-zero-line count, since
                 * even below-threshold lines do add up towards band spectral power.
                 * So, fall steeply towards zero, but smoothly
                 */
                if (s >= ethresh) {
                    nzl += 1.0f;
                } else {
    
                    if (nzslope == 2.f)
                        nzl += (s / ethresh) * (s / ethresh);
                    else
                        nzl += ff_fast_powf(s / ethresh, nzslope);
    
                }
            }
            if (e2 > thresh) {
                float frm;
                e *= iswb_size;
    
                /** compute variance */
                for (i = 0; i < swb_size; i++) {
                    float d = fabsf(scaled[w2*128+i]) - e;
                    var += d*d;
                }
                var = sqrtf(var * iswb_sizem1);
    
                e2 *= iswb_size;
                frm = e / FFMIN(e+4*var,maxval);
                form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
                weight += e2;
            }
        }
        if (weight > 0) {
            return form / weight;
        } else {
            return 1.0f;
        }
    }
    
    
    /** Return the minimum scalefactor where the quantized coef does not clip. */
    static inline uint8_t coef2minsf(float coef)
    {
        return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
    }
    
    /** Return the maximum scalefactor where the quantized coef is not zero. */
    static inline uint8_t coef2maxsf(float coef)
    {
        return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
    }
    
    /*
     * Returns the closest possible index to an array of float values, given a value.
     */
    static inline int quant_array_idx(const float val, const float *arr, const int num)
    {
        int i, index = 0;
        float quant_min_err = INFINITY;
        for (i = 0; i < num; i++) {
            float error = (val - arr[i])*(val - arr[i]);
            if (error < quant_min_err) {
                quant_min_err = error;
                index = i;
            }
        }
        return index;
    }
    
    
    /**
     * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
     */
    static av_always_inline float bval2bmax(float b)
    {
        return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
    }
    
    
    /*
     * Compute a nextband map to be used with SF delta constraint utilities.
     * The nextband array should contain 128 elements, and positions that don't
     * map to valid, nonzero bands of the form w*16+g (with w being the initial
     * window of the window group, only) are left indetermined.
     */
    static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
    {
        unsigned char prevband = 0;
        int w, g;
        /** Just a safe default */
        for (g = 0; g < 128; g++)
            nextband[g] = g;
    
        /** Now really navigate the nonzero band chain */
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
            for (g = 0; g < sce->ics.num_swb; g++) {
                if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
                    prevband = nextband[prevband] = w*16+g;
            }
        }
        nextband[prevband] = prevband; /* terminate */
    }
    
    /*
     * Updates nextband to reflect a removed band (equivalent to
     * calling ff_init_nextband_map after marking a band as zero)
     */
    static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
    {
        nextband[prevband] = nextband[band];
    }
    
    /*
     * Checks whether the specified band could be removed without inducing
     * scalefactor delta that violates SF delta encoding constraints.
     * prev_sf has to be the scalefactor of the previous nonzero, nonspecial
     * band, in encoding order, or negative if there was no such band.
     */
    static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
        const uint8_t *nextband, int prev_sf, int band)
    {
        return prev_sf >= 0
            && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
            && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
    }
    
    /*
     * Checks whether the specified band's scalefactor could be replaced
     * with another one without violating SF delta encoding constraints.
     * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
     * band, in encoding order, or negative if there was no such band.
     */
    static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
        const uint8_t *nextband, int prev_sf, int new_sf, int band)
    {
        return new_sf >= (prev_sf - SCALE_MAX_DIFF)
            && new_sf <= (prev_sf + SCALE_MAX_DIFF)
            && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
            && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
    }
    
    
    #define ERROR_IF(cond, ...) \
        if (cond) { \
            av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
            return AVERROR(EINVAL); \
        }
    
    #define WARN_IF(cond, ...) \
        if (cond) { \
            av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
        }
    
    #endif /* AVCODEC_AACENC_UTILS_H */