Skip to content
Snippets Groups Projects
dither.c 13.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
     *
     * Triangular with Noise Shaping is based on opusfile.
     * Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors
     *
     * This file is part of Libav.
     *
     * Libav is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * Libav is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with Libav; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    /**
     * @file
     * Dithered Audio Sample Quantization
     *
     * Converts from dbl, flt, or s32 to s16 using dithering.
     */
    
    #include <math.h>
    #include <stdint.h>
    
    
    #include "libavutil/attributes.h"
    
    #include "libavutil/common.h"
    #include "libavutil/lfg.h"
    #include "libavutil/mem.h"
    #include "libavutil/samplefmt.h"
    #include "audio_convert.h"
    #include "dither.h"
    #include "internal.h"
    
    typedef struct DitherState {
        int mute;
        unsigned int seed;
        AVLFG lfg;
        float *noise_buf;
        int noise_buf_size;
        int noise_buf_ptr;
        float dither_a[4];
        float dither_b[4];
    } DitherState;
    
    struct DitherContext {
        DitherDSPContext  ddsp;
        enum AVResampleDitherMethod method;
    
        int apply_map;
        ChannelMapInfo *ch_map_info;
    
    
        int mute_dither_threshold;  // threshold for disabling dither
        int mute_reset_threshold;   // threshold for resetting noise shaping
        const float *ns_coef_b;     // noise shaping coeffs
        const float *ns_coef_a;     // noise shaping coeffs
    
        int channels;
        DitherState *state;         // dither states for each channel
    
        AudioData *flt_data;        // input data in fltp
        AudioData *s16_data;        // dithered output in s16p
        AudioConvert *ac_in;        // converter for input to fltp
        AudioConvert *ac_out;       // converter for s16p to s16 (if needed)
    
        void (*quantize)(int16_t *dst, const float *src, float *dither, int len);
        int samples_align;
    };
    
    /* mute threshold, in seconds */
    #define MUTE_THRESHOLD_SEC 0.000333
    
    /* scale factor for 16-bit output.
       The signal is attenuated slightly to avoid clipping */
    #define S16_SCALE 32753.0f
    
    /* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */
    #define LFG_SCALE (1.0f / (2.0f * INT32_MAX))
    
    /* noise shaping coefficients */
    
    static const float ns_48_coef_b[4] = {
        2.2374f, -0.7339f, -0.1251f, -0.6033f
    };
    
    static const float ns_48_coef_a[4] = {
        0.9030f, 0.0116f, -0.5853f, -0.2571f
    };
    
    static const float ns_44_coef_b[4] = {
        2.2061f, -0.4707f, -0.2534f, -0.6213f
    };
    
    static const float ns_44_coef_a[4] = {
        1.0587f, 0.0676f, -0.6054f, -0.2738f
    };
    
    static void dither_int_to_float_rectangular_c(float *dst, int *src, int len)
    {
        int i;
        for (i = 0; i < len; i++)
            dst[i] = src[i] * LFG_SCALE;
    }
    
    static void dither_int_to_float_triangular_c(float *dst, int *src0, int len)
    {
        int i;
        int *src1  = src0 + len;
    
        for (i = 0; i < len; i++) {
            float r = src0[i] * LFG_SCALE;
            r      += src1[i] * LFG_SCALE;
            dst[i]  = r;
        }
    }
    
    static void quantize_c(int16_t *dst, const float *src, float *dither, int len)
    {
        int i;
        for (i = 0; i < len; i++)
            dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i]));
    }
    
    #define SQRT_1_6 0.40824829046386301723f
    
    static void dither_highpass_filter(float *src, int len)
    {
        int i;
    
        /* filter is from libswresample in FFmpeg */
        for (i = 0; i < len - 2; i++)
            src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6;
    }
    
    static int generate_dither_noise(DitherContext *c, DitherState *state,
                                     int min_samples)
    {
        int i;
        int nb_samples  = FFALIGN(min_samples, 16) + 16;
        int buf_samples = nb_samples *
                          (c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2);
        unsigned int *noise_buf_ui;
    
        av_freep(&state->noise_buf);
        state->noise_buf_size = state->noise_buf_ptr = 0;
    
        state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf));
        if (!state->noise_buf)
            return AVERROR(ENOMEM);
        state->noise_buf_size = FFALIGN(min_samples, 16);
        noise_buf_ui          = (unsigned int *)state->noise_buf;
    
        av_lfg_init(&state->lfg, state->seed);
        for (i = 0; i < buf_samples; i++)
            noise_buf_ui[i] = av_lfg_get(&state->lfg);
    
        c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples);
    
        if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_HP)
            dither_highpass_filter(state->noise_buf, nb_samples);
    
        return 0;
    }
    
    static void quantize_triangular_ns(DitherContext *c, DitherState *state,
                                       int16_t *dst, const float *src,
                                       int nb_samples)
    {
        int i, j;
        float *dither = &state->noise_buf[state->noise_buf_ptr];
    
        if (state->mute > c->mute_reset_threshold)
            memset(state->dither_a, 0, sizeof(state->dither_a));
    
        for (i = 0; i < nb_samples; i++) {
            float err = 0;
            float sample = src[i] * S16_SCALE;
    
            for (j = 0; j < 4; j++) {
                err += c->ns_coef_b[j] * state->dither_b[j] -
                       c->ns_coef_a[j] * state->dither_a[j];
            }
            for (j = 3; j > 0; j--) {
                state->dither_a[j] = state->dither_a[j - 1];
                state->dither_b[j] = state->dither_b[j - 1];
            }
            state->dither_a[0] = err;
            sample -= err;
    
            if (state->mute > c->mute_dither_threshold) {
                dst[i]             = av_clip_int16(lrintf(sample));
                state->dither_b[0] = 0;
            } else {
                dst[i]             = av_clip_int16(lrintf(sample + dither[i]));
                state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f);
            }
    
            state->mute++;
            if (src[i])
                state->mute = 0;
        }
    }
    
    static int convert_samples(DitherContext *c, int16_t **dst, float * const *src,
                               int channels, int nb_samples)
    {
        int ch, ret;
        int aligned_samples = FFALIGN(nb_samples, 16);
    
        for (ch = 0; ch < channels; ch++) {
            DitherState *state = &c->state[ch];
    
            if (state->noise_buf_size < aligned_samples) {
                ret = generate_dither_noise(c, state, nb_samples);
                if (ret < 0)
                    return ret;
            } else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) {
                state->noise_buf_ptr = 0;
            }
    
            if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
                quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples);
            } else {
                c->quantize(dst[ch], src[ch],
                            &state->noise_buf[state->noise_buf_ptr],
                            FFALIGN(nb_samples, c->samples_align));
            }
    
            state->noise_buf_ptr += aligned_samples;
        }
    
        return 0;
    }
    
    int ff_convert_dither(DitherContext *c, AudioData *dst, AudioData *src)
    {
        int ret;
        AudioData *flt_data;
    
        /* output directly to dst if it is planar */
        if (dst->sample_fmt == AV_SAMPLE_FMT_S16P)
            c->s16_data = dst;
        else {
            /* make sure s16_data is large enough for the output */
            ret = ff_audio_data_realloc(c->s16_data, src->nb_samples);
            if (ret < 0)
                return ret;
        }
    
    
        if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
    
            /* make sure flt_data is large enough for the input */
            ret = ff_audio_data_realloc(c->flt_data, src->nb_samples);
            if (ret < 0)
                return ret;
            flt_data = c->flt_data;
    
        if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) {
    
            /* convert input samples to fltp and scale to s16 range */
            ret = ff_audio_convert(c->ac_in, flt_data, src);
            if (ret < 0)
                return ret;
    
        } else if (c->apply_map) {
            ret = ff_audio_data_copy(flt_data, src, c->ch_map_info);
            if (ret < 0)
                return ret;
    
        } else {
            flt_data = src;
        }
    
        /* check alignment and padding constraints */
        if (c->method != AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
            int ptr_align     = FFMIN(flt_data->ptr_align,     c->s16_data->ptr_align);
            int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align);
            int aligned_len   = FFALIGN(src->nb_samples, c->ddsp.samples_align);
    
            if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) {
                c->quantize      = c->ddsp.quantize;
                c->samples_align = c->ddsp.samples_align;
            } else {
                c->quantize      = quantize_c;
                c->samples_align = 1;
            }
        }
    
        ret = convert_samples(c, (int16_t **)c->s16_data->data,
                              (float * const *)flt_data->data, src->channels,
                              src->nb_samples);
        if (ret < 0)
            return ret;
    
        c->s16_data->nb_samples = src->nb_samples;
    
        /* interleave output to dst if needed */
        if (dst->sample_fmt == AV_SAMPLE_FMT_S16) {
            ret = ff_audio_convert(c->ac_out, dst, c->s16_data);
            if (ret < 0)
                return ret;
        } else
            c->s16_data = NULL;
    
        return 0;
    }
    
    void ff_dither_free(DitherContext **cp)
    {
        DitherContext *c = *cp;
        int ch;
    
        if (!c)
            return;
        ff_audio_data_free(&c->flt_data);
        ff_audio_data_free(&c->s16_data);
        ff_audio_convert_free(&c->ac_in);
        ff_audio_convert_free(&c->ac_out);
        for (ch = 0; ch < c->channels; ch++)
            av_free(c->state[ch].noise_buf);
        av_free(c->state);
        av_freep(cp);
    }
    
    
    static av_cold void dither_init(DitherDSPContext *ddsp,
                                    enum AVResampleDitherMethod method)
    
    {
        ddsp->quantize      = quantize_c;
        ddsp->ptr_align     = 1;
        ddsp->samples_align = 1;
    
        if (method == AV_RESAMPLE_DITHER_RECTANGULAR)
            ddsp->dither_int_to_float = dither_int_to_float_rectangular_c;
        else
            ddsp->dither_int_to_float = dither_int_to_float_triangular_c;
    
    
        if (ARCH_X86)
            ff_dither_init_x86(ddsp, method);
    
    }
    
    DitherContext *ff_dither_alloc(AVAudioResampleContext *avr,
                                   enum AVSampleFormat out_fmt,
                                   enum AVSampleFormat in_fmt,
    
                                   int channels, int sample_rate, int apply_map)
    
    {
        AVLFG seed_gen;
        DitherContext *c;
        int ch;
    
        if (av_get_packed_sample_fmt(out_fmt) != AV_SAMPLE_FMT_S16 ||
            av_get_bytes_per_sample(in_fmt) <= 2) {
            av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n",
                   av_get_sample_fmt_name(in_fmt), av_get_sample_fmt_name(out_fmt));
            return NULL;
        }
    
        c = av_mallocz(sizeof(*c));
        if (!c)
            return NULL;
    
    
        c->apply_map = apply_map;
        if (apply_map)
            c->ch_map_info = &avr->ch_map_info;
    
    
        if (avr->dither_method == AV_RESAMPLE_DITHER_TRIANGULAR_NS &&
            sample_rate != 48000 && sample_rate != 44100) {
            av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz "
                   "for triangular_ns dither. using triangular_hp instead.\n");
            avr->dither_method = AV_RESAMPLE_DITHER_TRIANGULAR_HP;
        }
        c->method = avr->dither_method;
        dither_init(&c->ddsp, c->method);
    
        if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
            if (sample_rate == 48000) {
                c->ns_coef_b = ns_48_coef_b;
                c->ns_coef_a = ns_48_coef_a;
            } else {
                c->ns_coef_b = ns_44_coef_b;
                c->ns_coef_a = ns_44_coef_a;
            }
        }
    
        /* Either s16 or s16p output format is allowed, but s16p is used
           internally, so we need to use a temp buffer and interleave if the output
           format is s16 */
        if (out_fmt != AV_SAMPLE_FMT_S16P) {
            c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P,
                                              "dither s16 buffer");
            if (!c->s16_data)
                goto fail;
    
            c->ac_out = ff_audio_convert_alloc(avr, out_fmt, AV_SAMPLE_FMT_S16P,
    
        if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
    
            c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP,
                                              "dither flt buffer");
            if (!c->flt_data)
                goto fail;
    
        }
        if (in_fmt != AV_SAMPLE_FMT_FLTP) {
    
            c->ac_in = ff_audio_convert_alloc(avr, AV_SAMPLE_FMT_FLTP, in_fmt,
    
                                              channels, sample_rate, c->apply_map);
    
            if (!c->ac_in)
                goto fail;
        }
    
        c->state = av_mallocz(channels * sizeof(*c->state));
        if (!c->state)
            goto fail;
        c->channels = channels;
    
        /* calculate thresholds for turning off dithering during periods of
           silence to avoid replacing digital silence with quiet dither noise */
        c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC);
        c->mute_reset_threshold  = c->mute_dither_threshold * 4;
    
        /* initialize dither states */
        av_lfg_init(&seed_gen, 0xC0FFEE);
        for (ch = 0; ch < channels; ch++) {
            DitherState *state = &c->state[ch];
            state->mute = c->mute_reset_threshold + 1;
            state->seed = av_lfg_get(&seed_gen);
            generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2));
        }
    
        return c;
    
    fail:
        ff_dither_free(&c);
        return NULL;
    }