Newer
Older
/*
* Copyright (C) 2011 Michael Niedermayer (michaelni@gmx.at)
* Copyright (c) 2002 Fabrice Bellard
*
* This file is part of libswresample
*
* libswresample is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* libswresample is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libswresample; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/audioconvert.h"
Michael Niedermayer
committed
#include "libavutil/opt.h"
#include "swresample.h"
#undef fprintf
#define SAMPLES 1000
#define ASSERT_LEVEL 2
static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){
if(av_sample_fmt_is_planar(f)){
f= av_get_alt_sample_fmt(f, 0);
p= a[ch];
}else{
p= a[0];
index= ch + index*ch_count;
}
case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0;
case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0;
case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0;
case AV_SAMPLE_FMT_FLT: return ((const float *)p)[index];
case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index];
default: av_assert0(0);
static void set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){
uint8_t *p;
if(av_sample_fmt_is_planar(f)){
f= av_get_alt_sample_fmt(f, 0);
p= a[ch];
}else{
p= a[0];
index= ch + index*ch_count;
}
case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127)); break;
case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767)); break;
case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(lrint(v*2147483647)); break;
case AV_SAMPLE_FMT_FLT: ((float *)p)[index]= v; break;
case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v; break;
static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){
if(av_sample_fmt_is_planar(f)){
f= av_get_alt_sample_fmt(f, 0);
for(ch= 0; ch<ch_count; ch++)
a[ch] += index*av_get_bytes_per_sample(f);
}else{
a[0] += index*ch_count*av_get_bytes_per_sample(f);
}
}
static const enum AVSampleFormat formats[] = {
AV_SAMPLE_FMT_S16,
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_FLT,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_S32,
AV_SAMPLE_FMT_U8P,
AV_SAMPLE_FMT_U8,
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_DBL,
};
static const int rates[] = {
8000,
11025,
16000,
22050,
32000,
48000,
};
AV_CH_LAYOUT_MONO ,
AV_CH_LAYOUT_STEREO ,
AV_CH_LAYOUT_2_1 ,
AV_CH_LAYOUT_SURROUND ,
AV_CH_LAYOUT_4POINT0 ,
AV_CH_LAYOUT_2_2 ,
AV_CH_LAYOUT_QUAD ,
AV_CH_LAYOUT_5POINT0 ,
AV_CH_LAYOUT_5POINT1 ,
AV_CH_LAYOUT_5POINT0_BACK ,
AV_CH_LAYOUT_5POINT1_BACK ,
AV_CH_LAYOUT_7POINT0 ,
AV_CH_LAYOUT_7POINT1 ,
AV_CH_LAYOUT_7POINT1_WIDE ,
static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){
if(av_sample_fmt_is_planar(format)){
int i;
int plane_size= av_get_bytes_per_sample(format&0xFF)*samples;
format&=0xFF;
for(i=0; i<SWR_CH_MAX; i++){
out[i]= in + i*plane_size;
}
}else{
out[0]= in;
}
}
Michael Niedermayer
committed
static int cmp(const int *a, const int *b){
return *a - *b;
}
static void audiogen(void *data, enum AVSampleFormat sample_fmt,
int channels, int sample_rate, int nb_samples)
{
int i, ch, k;
double v, f, a, ampa;
double tabf1[SWR_CH_MAX];
double tabf2[SWR_CH_MAX];
double taba[SWR_CH_MAX];
#define PUT_SAMPLE set(data, ch, k, channels, sample_fmt, v);
#define uint_rand(x) (x = x * 1664525 + 1013904223)
#define dbl_rand(x) (uint_rand(x)*2.0 / (double)UINT_MAX - 1)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
k = 0;
/* 1 second of single freq sinus at 1000 Hz */
a = 0;
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
v = sin(a) * 0.30;
for (ch = 0; ch < channels; ch++)
PUT_SAMPLE
a += M_PI * 1000.0 * 2.0 / sample_rate;
}
/* 1 second of varing frequency between 100 and 10000 Hz */
a = 0;
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
v = sin(a) * 0.30;
for (ch = 0; ch < channels; ch++)
PUT_SAMPLE
f = 100.0 + (((10000.0 - 100.0) * i) / sample_rate);
a += M_PI * f * 2.0 / sample_rate;
}
/* 0.5 second of low amplitude white noise */
for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
v = dbl_rand(rnd) * 0.30;
for (ch = 0; ch < channels; ch++)
PUT_SAMPLE
}
/* 0.5 second of high amplitude white noise */
for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) {
v = dbl_rand(rnd);
for (ch = 0; ch < channels; ch++)
PUT_SAMPLE
}
/* 1 second of unrelated ramps for each channel */
for (ch = 0; ch < channels; ch++) {
taba[ch] = 0;
tabf1[ch] = 100 + uint_rand(rnd) % 5000;
tabf2[ch] = 100 + uint_rand(rnd) % 5000;
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
}
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) {
for (ch = 0; ch < channels; ch++) {
v = sin(taba[ch]) * 0.30;
PUT_SAMPLE
f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate);
taba[ch] += M_PI * f * 2.0 / sample_rate;
}
}
/* 2 seconds of 500 Hz with varying volume */
a = 0;
ampa = 0;
for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) {
for (ch = 0; ch < channels; ch++) {
double amp = (1.0 + sin(ampa)) * 0.15;
if (ch & 1)
amp = 0.30 - amp;
v = sin(a) * amp;
PUT_SAMPLE
a += M_PI * 500.0 * 2.0 / sample_rate;
ampa += M_PI * 2.0 / sample_rate;
}
}
}
int in_sample_rate, out_sample_rate, ch ,i, flush_count;
uint64_t in_ch_layout, out_ch_layout;
enum AVSampleFormat in_sample_fmt, out_sample_fmt;
uint8_t array_in[SAMPLES*8*8];
uint8_t array_mid[SAMPLES*8*8*3];
uint8_t array_out[SAMPLES*8*8+100];
uint8_t *ain[SWR_CH_MAX];
uint8_t *aout[SWR_CH_MAX];
uint8_t *amid[SWR_CH_MAX];
Michael Niedermayer
committed
int max_tests = FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats);
int num_tests = 10000;
uint32_t seed = 0;
int remaining_tests[max_tests];
int test;
struct SwrContext * forw_ctx= NULL;
struct SwrContext *backw_ctx= NULL;
Michael Niedermayer
committed
if (argc > 1) {
if (!strcmp(argv[1], "-h")) {
av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>]\n"
"Default is %d\n", num_tests);
return 0;
}
num_tests = strtol(argv[1], NULL, 0);
if(num_tests<= 0 || num_tests>max_tests)
num_tests = max_tests;
}
for(i=0; i<max_tests; i++)
remaining_tests[i] = i;
for(test=0; test<num_tests; test++){
unsigned r;
Michael Niedermayer
committed
r = (seed * (uint64_t)(max_tests - test)) >>32;
FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]);
}
qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), (void*)cmp);
Michael Niedermayer
committed
for(test=0; test<num_tests; test++){
char in_layout_string[256];
char out_layout_string[256];
Michael Niedermayer
committed
unsigned vector= remaining_tests[max_tests - test - 1];
int in_ch_count;
int out_count, mid_count, out_ch_count;
Michael Niedermayer
committed
in_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
out_ch_layout = layouts[vector % FF_ARRAY_ELEMS(layouts)]; vector /= FF_ARRAY_ELEMS(layouts);
in_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
out_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats);
out_sample_rate = rates [vector % FF_ARRAY_ELEMS(rates )]; vector /= FF_ARRAY_ELEMS(rates);
av_assert0(!vector);
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
in_ch_count= av_get_channel_layout_nb_channels(in_ch_layout);
out_ch_count= av_get_channel_layout_nb_channels(out_ch_layout);
av_get_channel_layout_string( in_layout_string, sizeof( in_layout_string), in_ch_count, in_ch_layout);
av_get_channel_layout_string(out_layout_string, sizeof(out_layout_string), out_ch_count, out_ch_layout);
fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n",
in_layout_string, out_layout_string,
in_sample_rate, out_sample_rate,
av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt));
forw_ctx = swr_alloc_set_opts(forw_ctx, out_ch_layout, out_sample_fmt, out_sample_rate,
in_ch_layout, in_sample_fmt, in_sample_rate,
0, 0);
backw_ctx = swr_alloc_set_opts(backw_ctx, in_ch_layout, in_sample_fmt, in_sample_rate,
out_ch_layout, out_sample_fmt, out_sample_rate,
0, 0);
if(swr_init( forw_ctx) < 0)
fprintf(stderr, "swr_init(->) failed\n");
if(swr_init(backw_ctx) < 0)
fprintf(stderr, "swr_init(<-) failed\n");
if(!forw_ctx)
fprintf(stderr, "Failed to init forw_cts\n");
if(!backw_ctx)
fprintf(stderr, "Failed to init backw_ctx\n");
//FIXME test planar
setup_array(ain , array_in , in_sample_fmt, SAMPLES);
setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES);
setup_array(aout, array_out, in_sample_fmt , SAMPLES);
for(ch=0; ch<in_ch_count; ch++){
for(i=0; i<SAMPLES; i++)
set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES));
}
audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES);
mode++;
mode%=3;
if(mode==0 /*|| out_sample_rate == in_sample_rate*/) {
mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES);
mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, SAMPLES);
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, 1);
av_assert0(mid_count==0);
shift(ain, 1, in_ch_count, in_sample_fmt);
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
shift(amid, mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
mid_count+=swr_convert(forw_ctx, amid, 2, (const uint8_t **)ain, 2);
shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
shift(ain, 2, in_ch_count, in_sample_fmt);
mid_count+=swr_convert(forw_ctx, amid, 1, (const uint8_t **)ain, SAMPLES-3);
shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count;
shift(ain, -3, in_ch_count, in_sample_fmt);
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0);
shift(amid, -tmp_count, out_ch_count, out_sample_fmt);
}
out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count);
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
double sum_a= 0;
double sum_b= 0;
double sum_aa= 0;
double sum_bb= 0;
double sum_ab= 0;
for(i=0; i<out_count; i++){
double a= get(ain , ch, i, in_ch_count, in_sample_fmt);
double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
sum_a += a;
sum_b += b;
sum_aa+= a*a;
sum_bb+= b*b;
sum_ab+= a*b;
maxdiff= FFMAX(maxdiff, FFABS(a-b));
}
sse= sum_aa + sum_bb - 2*sum_ab;
fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", sqrt(sse/out_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count);
}
flush_i++;
flush_i%=21;
flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0);
shift(aout, flush_i, in_ch_count, in_sample_fmt);
flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0);
shift(aout, -flush_i, in_ch_count, in_sample_fmt);
if(flush_count){
for(ch=0; ch<in_ch_count; ch++){
double sum_a= 0;
double sum_b= 0;
double sum_aa= 0;
double sum_bb= 0;
double sum_ab= 0;
for(i=0; i<flush_count; i++){
double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt);
double b= get(aout, ch, i, in_ch_count, in_sample_fmt);
sum_a += a;
sum_b += b;
sum_aa+= a*a;
sum_bb+= b*b;
sum_ab+= a*b;
maxdiff= FFMAX(maxdiff, FFABS(a-b));
}
sse= sum_aa + sum_bb - 2*sum_ab;
fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i);
}
}
fprintf(stderr, "\n");